
I A0-Ai9 161 OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION SC--ETC F '6 9/2
I91 THE I MPLEMENTATION OF A MULTI;BACKENO DATABASE SYSTEM (MOBS) P--ETC(U)

JUL A2 X HE, M HIS ASH IDA, 0 KHS IAO , D K ERR N0OVUB 75 C 0573

UNCLASSIFIED NPS_ 52 AZ NIB NL

smmhmhmsmhh
Ehhhhhhmhhmmhl
mhmhEEEEmhEEEI
mhhhmhhhhhhhl
mhomhmhmhhmhum

NPS-52-82-008

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
i SEP 1 3 1982

A

THE IMPLEMENTATION OF A MULTI-BACKEND DATABASE
SYSTEM (MDBS): PART II - THE FIRST PROTOTYPE
MDBS AND THE SOFTWARE ENGINEERING EXPERIENCE

Xlngui He, Masanobu Higashida, David K. Hsiao,
Douglas S. Kerr, Ali Orooji, Zong-Zhi Shi,

and Paula Strawser

L' July 1982

Approved for public release; distribution unlimited

Prepared for: Naval Postgraduate School
Monterey, CA 93940

026

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral 3. J. Ekelund David A. Schrady
Superintendent Acting Provost

a.

The work reported herein was supported by Contract N00014-75-C-0573 from

the Office of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

i ~DAVID K. HSIAO" v

Professor and Chairman
of Computer Science

Reviewed by: Released by:

DAVID K." HSIAO, Chainnayn WILA M. -OL

Department of Computer Science Dean of Research

*1

Unclassified-_____________________
SECURITY CLASSIFICATION OF THIS PAGE (ftenm Data EalRen___________________

REPORT DOCMENTATIOt4 PAGE DIWTOS
1. REPORT UM3911 2. GOVT ACCSSO COT! YATALOG NMR

NPS52-82-008 pq _____________

14. TITLE (and Subtitle) S. TYPE OF REKPORT a PERIOD COVERRED

THE IMPLEMENTATION OF A MULTI-BACKEND DATABASE Technical Report
SYSTEM (MOBS): PART II -THE FIRST PROTOTYPE _____________

MOBS AND THE SOFTWARE ENGINEERING EXPERIENCE 41. PERFORMING ORG. REPORT NUNSER

7. AUTHOR(s) A. CONTRACT ON GRANT 111101111WO)

Xingui He, Masanobu Higashida, David K. Hsiao, N00014-75-C-0573
Douglas S. Kerr, Ali Orooji, Zong-Zhi Shi,
Paula Strawser ______________

9. PERFORMING ORG0ANI ZATION NAMEK AND ADDRESS A0 R~GAS k3,PRJ&TTM

Naval Postgraduate School 41-lI M Uj .T1

Monterey, CA 9394041-A

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT CATS

Naval Postgraduate School July 1982
Monterey, CA 93940 1S. NUMMER OF PAGES

____ ___ ____ ___ ____ ___ ___ ____ ___ ____ ___ ___ 149
14. MONITORING AGENCY NAME A AODRESS(II different from Centfmlln Of1140) I5. SECURITY CLASS. (of tife repot)

Unclassified

15a. DEC I.ASSIPI CATION/ DOWNGRAOING
SCHEDULE

IS. DISTRIMUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

I7. DISTRIOUTION STATEMENT (of the abstract entered in block 20. it different from Report)

IS. SUPPLEMENTARY NOTES

j I9. IKEY WORDS (Continue on reverse, side if neceeomvy and tdentlty by block nuamber)

4 backend database system, database system implementation, database computer,

database machine, software engineering, database.

20. ANSTRACT (Continue en reverse aide if necessary aud identif' y bl eek aumber)
The Multi-Backend Database System, MDBS, uses one microcomputer as the

master or controller, and a varying number of microcomputers as slaves or
backends. No special hardware is required. The backends are configured in
a parallel manner. A new backend may be added by replicating the existing
software on an addition minicomputer.

A prototype MOBS is being implemented in order to carry out design
verification and performance evaluation studies. This report is the second

DD I FA17 1473 EDITION OF I NOV 6S IS OSSOLSTE
S N 0102- LF- 014- 6601 SECURMITY CLAWFIICAtION OF TOM1 PAGE 00 we*

UIUTYV CLAMPICAS OF TI PAGS MM 3M. 300

Stn a series which describe the MDBS implementation. First, the overall
design and Implementation of MDBS is given. Then, the controller and the
backends functions are described in detail.

In order to facilitate performance evaluation experiments, a program
to generate test data and a program to generate test requests are required.
The former program was described in the first report. The latter program
is described in this report.

Our goal is not limited to the production of a prototype MDBS, but is
also aimed-toward the application of software engineering techniques to the
development of the system. Thus, the software engineering techniques being
used are also discussed.

The appendic'es contain the detailed designs for the controller
subsystem, one oF the two modules in the backends subsystem (the other
module, the directory management, was contained in the first report) and
the test request generation module.

U

S/N 0102 LK 014"81

SSCSUNTY CkAUWICA"ON OF tMi P"ugM= DO&s heAes

PAGE iii

PREFACE

This work was supported by Contract N00014-75-C-0573 from the Office of

Naval Research to Dr. David K. Hsiao and conducted in the Laboratory for

S Database Systems Research. The Laboratory for Database Systems Research is

initially funded by the Digital Equipment Corporation (DEC), Office of Naval

Research (ONR) and the Ohio State University (OSU) and consists of the staff,

graduate students, undergraduate students, Visiting Scholars and faculty for

conducting research in database systems. Dr. Douglas S. Kerr, Associate

Professor of Computer and Information Scie.;e at the Ohio State University is

the present Director of Laboratory. -J

Since July 1, 1982, Dr. Hsiao assumed the Chairmanship of the Computer

Science Department at the Naval Postgraduate School and continued the funded

research at the Naval Postgraduate School. The Laboratory for Database

Systems Research will be moved to the Naval Postgraduate School (NPS) in

June of 1983 and supported by DEC, ONR and NPS. This technical report was

drafted at the Ohio State University and completed at the Naval Postgraduate

School.

We would like to thank all those who have helped with the 1DBS project.

In particular, the MDBS design and analysis were developed by Jai Menon.

(Now, Dr. Jai Menon of IBM Research Laboratory, San Jose.) He also provided

much help in the detailed designs. Several graduate students are involved

with MDBS project: Richard Boyne, Patti Dock, and James Kiper. Several un-

dergraduate students are also involved with the project: Julie Bendig,

Raymond Browder, Chris Jeschke, Drew Logan, Jim Mckenna, William Mielke, and

Joe Stuber. Tamer Azsu and Steven Barth provided much help in the detailed

designs and coding. Jose Alegria, Tom Bodnovich and David Brown contributed

background material which was necessary for making our design decisions.

.Accession For _ .

ilo

~ all

_ , . . . -.

PAGE iv

TAML OF CONTENTS

LIST OF FIGURES * *********..**** viii

PBZFACE...o............................. ii

1. PROTOTYPING A MULTI-BACKEND DATABASE SYSTEM (MDBS) 1

1.1 Logical Description of 2

1.1.1 The MDBS Hardware and Software Organizations... 2

1.1.2 Distribution of Request Execution Among

Controller and Bckenda... 7

1.2 The Implementation Strategy - What and Why?.... .0.... . 13

1.2.1 Version I - A Very Simple System: Single Mini

* Without Concurrency Control and With Simplified

* I ~~Directory Management.... 13

1.2.2 Version 11 - A Simple System: Single Mini With

Concurrency Control..-. *o 66.606".. 13

1.2.3 Version III - The First "Real" System : Multiple

Minis With Concurrency Control*.***.****..oo.. 14

1.2.4 Version IV - The Real System With "Good"

Directory Managementt.* . 14

1.2.5 Version V - The Full System With All the

Designed Features Included.oo. . 9.. *..*.* 14

1.3 An Overview of the MDBS Implementation 14

1.3.1 A Top-level View of MDBS...ooo..ooooo 15

1.3.2 Functions ofthe Controller.o.o too... oe..... 15

1.3.3 Functions ofeachaced.... 17

1.3.4lRequest Eecution iMDBS,,,o,,o..ooo......... *9 17

(A) Sequence of Actions for an Insert Request 18

(B) Sequence of Actions for Non-insert Requests 20

1.3.5 The Role of the Communication Interface.o..soo. oo. 22

1.4 The Organization of the Rest of the Report... 6.0.... . 22

2.* A FUNCTIONIAL DESCRIPTION OF te 23

2.1 Functions oftheotolr............... 23

2.1.1 Thelequest Preparation Function-................. 23

(A) The Parser Function........ 23

(B) The Request Composer Function.... 00000000....... 24

2.1.2 The Insert Information Generation Functiosto....... 26

PAGCE v

(A) The Backend Selector Function 26

(B) The Cluster Id Generator Fuaction............... 26

(C) The Descriptor Id Generator Function............ 27

2.1.3 The Post Processing lhnctiouu....................... 27

(A) The Aggregate Post Operation Functiou 27

(B) The Reply Monitor Function..................... 27

2.2 Functions of each Backend 28

2.2.1 The Directory Management Fuactions 28

(A) The Descriptor Search Function................. 28

(B) The Cluster Search Function..................... 28

(C) The Address Generation Function................. 29

2.2.2 The Record Processing Functions.................... 0 29

(A) The Physical Data Operation Function............ 29

(B) The Aggregate Operation Function 30

2.3 Request Execution in MDBS 30

2.3.1 Sequence of Actions for Insert Requests 30

2.3.2 Sequence of Actions for Delete Requests 32

2.3.3 Sequence of Actions for Retrieve Requests 34

2.3.4 Sequence of Actions for Update Requests........... 36

2.4 Process Structure of IDBS...................6............. 38

2.4.1 Tvo Alternative Process Structures for

Implementing MDBS 38

2.4.2 The Choice of Message-oriented Approach to
Implement MDBS 39

3. AN IMPLEMENTATION OF THE CONTROLLER IFNCTIONS 40

3.1 Design and Implementation Goals for the Controller 40

3.2 The Concept of "Traffic Unit"....* 41

3.3 The Structure of the Controller 41

3.3.1 The Request Preparation Functions 42

(A) The Parser Function............................. 42

(B) The Request Composer Function 43

3.3.2 The Insert Information Generation Functions......... 43

(A) The Backend Selector Function................... 44

(B) The Cluster Id Generator Function 45

(C) The Descriptor Id Generator function 45

3.3.3 The Post Processing Functions.................... . 45

PAGE Vi

3.4 The Process Structure of the Controller*.....e.. . .,. 46

4.AN IMPLENTATION OF BACKED FUCTIOS..........o.... e.. 47

4.1 Thelecord Processing unctionse. .o.oo. . e*... ... ** 47

4.1.1 The BlockBufferAbstraction......e.......... 48

4.1.2 The Retrieve Processing Subfunction.o.... 0.0.004... 49

4.1.3 The Aggregation Subfunctions......... .4..... 50

4.1.4 The Insert Processing Subfunction ...0... 00..... 0.. 51

4.1.5 The Update Processing Subfunction...0...0....0..4.. 51

4.1.6 The Delete Processing Subfunction 0...0-0. 53

4.2 Concurrency Control............. 54

4.2.1 Two Types of Consistency...o... 54

4.2o2 TwoCategories ofocs.............. 57

4.2o3 The otionof Traaction..o........... .. . 57

4.2.4 Concurrency Control Using a Message-Oriented

Approach............................. 58

(A) The Process Structure in the Backends*....... 58

(B) Cluster-To-Traffic-Unit Table (CTUT).o 59

(C) Traffic-Unit-To-Cluster Table (TUCT) 0...... 59

(D) The Processing of Concurrency Control

Information... o....0.... 00............. .. *06. 61

5.* TESTING MBS.... o 63

5.1 The Need for the Generation of Test Databases and

Lists of User Requests.e... .. .o 63

5o2 The Generation of Userequests Lists.... e..400.00.. .. 63

5.2.1 User-Generated vs. Program-Generated Requests*.,*@,5 63

5.2.2 A Simple Test Package for a Single User.o....... o.... 64

5o2.3 A Test rackage for the Simulation of Multiple

Concurrent Urs....... 65

5.2.4 A Test Package for the Gener.,tlon of Random

Requsts................................. 65

6. OUR SOMMEAR NGIEERINGEPEIECE... 67

6.1 The Effectiveness of the Techniques Usedo*4940060......... 67

6.1.1 The Use of Structured Valkthroughs..o.*. &06....... 67

6.1.2 The Use of a Formal Systems Specification

Language (S). 68

6.1.3 A Top-Down Design Strategy and the Use of

-7-7-

PAGE vii

Data and Service Abstractions 72

6.2 Trying New Software Engineering Techniques 72

6.2.1 The Use of Jackson Charts......................... 73

6.2.2 Standards for Module Decomposition.................. 73

6.3 Current Status of the Implementation...................... 79

RgIFR NCZS o......... 80

APPENDIX A: HOW TO READ AND FOLLOW THE PROGRAM

SPECIFICATIONS- 82

A.1 Parts within an Appendix...............o................. 82

A.2 The Format of a Part 82

A.3 Documentation Techniques for a Part........o............. 83

APPENDIX B: THE SSL SPECIFICATION FOR MDBS CONTROLLER 84

D.1 Part I - The Request Preparation Process................ 84

B.2 Part II - The Insert Information Generation Process...... 91

B.3 Part III - The Post Processing Process.................... 101

APPENDIX C: THE SSL SPECIFICATION FOR RECORD PROCESSINGo..o...... 117

C.1 Part I - The Control Subfunction of Record Processing... 117

C.2 Part II - The Retrieve Processing Subfunction............ 120

C.3 Part III - The Insert Processing Subfunctiono...*......... 126

C.4 Part IV - The Update Processing Subfunction 129

C.5 Part V - The Delete Processing Subfunction 134

APPENDIX D: THE SSL SPECIFICATION FOR THE TEST REQUEST

GENERATION AND EXECUTION PACKAGE 137

D.1 Part I - The Top Level of Test Request Generation

and Execution.................................. 137

D.2 Part II - The Output Nodule for Test Execution* ... 146

PAGvi i

LIST OF FIGURES

Page

Figure - The MDBS Hardware Organization 3

Figure 2 - Execution Phases of a Retrieval Request 5

Figure 3 - Execution of a Retrieval Request in the Presence
of Access Control and Concurrency Control 8

Figure 4 - Overyiew of Directory Management as Seen From
The x-th Backend 9

Figure 5 - Record Processing Function 0................... 11

Figure 6 - Modes of MDBS Operations 12

Figure 7 - The MDBS Structure..................... 16

Figure 8 - Sequence of Actions for an Insert Request................. 19

Figure 9 - Sequence of Actions for a Retrieve Request 21

Figure 10 - Sequence of Actions for an Insert Request 31

Figure 11 - Sequence of Actions for a Delete Request................. 33

Figure 12 - Sequence of Actions for a Retrieve Request 35

Figure 13 - Sequence of Actions for an Update Request 37

Figure 14 - A Sample of Cluster-To-Traffic-Unit Table (CTUT) 60

Figure 15 - The Traffic-Unit-To-Cluster Table (TUCT) Corresponding
to the CTUT in Figure 14 62

Figure 16 - A Sample Walkthrough Report 69

Figure 17 - A SSL Specification of a Program Procedure 71

Figure 18 - The Constructs Used in a Jackson Chart. o.... 74

Figure 19 -A Sample Program Structure..................... 75
Figure 20 - The SSL Corresponding to the Sample Program

Structure in Figure 19. so 76

Figure 21 - The Original Design for MDBS Controller 78

1.0 PROTOTYPING A MULTI-EACKEND DATABASE SYSTEM (NDDS)

Your approaches to the running of a database management system have been

proposed in the literature:

(1) Running the database management system along with all other software

on a single general-purpose computer, known as the host.

(2) Running the database management system on a second general-purpose

computer system, known as the backend. This is known as the

sinale-backend software approach.

(3) Developing a special-purpose database machine with spe Ily designed

hardware to perform the database management functiorz. his is known

as the database machine or hardware backend approach.

(4) Running the database management system on multiple al-purpose

computers. This is known as the multi-backend softwat :oach.

Database management systems built using the first approach have some

limitations, e.g., as the database grows and the rate of requests to database

system increases, the host computer performance decreases. Database manage-

ment systems built using the second approach have the same limitation, i.e.,

the performance of the single-backend system also decreases. Thus, overall

performance of the host and backend will be degraded. The third approach may

be promising, but not until the cost-effectiveness of this approach is demon-

strated.

The fourth approach configures the backends in a parallel way for per-

formance improvement. It also allows growth in the database and increase in

the request rate without performance degradation and software complexity.

This approach requires the development of an innovative software design which

allows the addition of more backends of the same type and the replication of

the software on the new backends without major system interruption. Thus, it

does not require the development of any new hardware, but only the develop-

meant of a new and replicable software architecture and a new and parallel

hardware configuration. This report is the second in a series [KerrS2] which

* describes the development of a multi-backend database system known as MDBS as

a prototype for experimenting with the fourth approach.

i

PAGE 2

1.1 Logical Description of MDBS

In this section, we give a brief review of MDBS. Full details on the

design and analysis of MDBS can be found in [Hsia8lal and [Rsia8lb]. The

first report in this series [Kerr82] gives a more detailed overview.

1.1.1 The MDBS Hardware and Software Organization

An overview of MDBS hardware organization is shown in Figure 1. The

controller and the backends are connected by a broadcast bus. The controller

will broadcast each request to all backends at the same time over this bus.

Furthermore, there will be minimal broadcasting from one backend to the other

backends.

Each backend is given a number of dedicated disk drives. The data from

each file is distributed across all the backends. Each backend will then

process the data from its own disk drives. Because each file is spread

across all the backends, all backends can now execute the same request in

parallel. Request execution at a backend is handled by having a queue of re-

quests at the backend. When a backend finishes executing one request it can

start executing the next request. In view of the execution mode, MDBS is a

multiple-instruction-and-multiple-data-stream (MIMD) organizaton.

The data model chosen for the system is the attribute-based data model

[Esial0. In MDBS the database consists of files of records. Each record is

a collection of keywords, optionally followed by a record body. A keyword is

made of an attribute-value pair such as <SALARY,12000> where $12,000 is the

value of the attribute SALARY. A record bk is a string of characters not

used by MDBS for search purposes. An example of a record without a record

body is shown below.

(<FILE,Employee>, <EMPLOYEENAMESmith>, <CITYColumbus>,

<SALARY,12000>, <SERVICE,10>)

The first attribute-value pairs in all records of a file are the same. In

particular, the attribute is FILE and the value is the file name. For exam-

ple, the above record is from the Employee file. When dealing with the re-

cords of the same file, we frequently omit the first attribute-value pair,

PAGE 3

ackend 1one or more
disk drives

Backnd 2one or more
disk drives

To the

host - Controller
comput e ._

B none or more
disk drives

Broadcasting
bus

Figure 1. The MDBS Hardware Organization

-7 iiii -ii__ _ _ ~-

- -..,...

PAGE 4

i.e., the file name, for illustration.

For performance reasons, records are logically grouped into clusters

based on the attribute values and attribute value ranges in the records.

These values and value ranges are called descriptors. For example, one clus-

ter might contain records for those employed in Columbus, making at least

$20,001 but not more than $25,000 and with at least 11 but not more than 15

years of service. Thus records of this cluster are grouped by the following

three descriptors:

(CITY-Columbus), (20001=<SALARY=<25000), (1I=<SERVICE=<15).

MDBS performs its operations by clusters. Thus finding records of employees

in Columbus making between $21,000 and $22,000 per year and with 12 to 13

years experience would require the retrieval of records in the cluster just

described. Other retrieval requests such as to find records of employees in

Columbus making between $21,000 and $28,000 and with 12 to 13 years experi-

ence might require additional retrieval of records from other clusters than

the one identified above.

In order to allow efficient processing of requests, records in a cluster

are spread across all the backends. Thus each backend needs to search only

its portion of the cluster. Given a user request, there must be a way, of

course, first to determine which clusters to search and then to determine the

location of records in a given cluster. To perform this task, MDBS utilizes

available descriptor information. For example, given the previous request

for finding employees where

(CITY-Columbus) and (21000=<SALARY=<28000) and (12u<SFAkVICE-<I3)

MDBS first determines that two clusters must be searched. These are the

clusters identified by the two sets of descriptors:

{ (CITY-Columbus), (20001-<SALARY-<25000), (11-<SERVIC-<15)

{ (CITY-Columbus), (25001=<SALARY=<30000), (II-<SERVICE-<15) }

After the clusters are identified, MDBS must then determine the disk ad-

dresses of the clusters at each backend. Finally MDBS will cause each back-

end to retrieve from its disks the records so addressed.

The execution phases of a retrieval request are summarized in Figure 2.

Descriptor search determines the descriptors that correspond to the request.

PAGE 5

Iwo Directory
Management.

From the
available From the

d descriptorven From the From the
determine ds, given cluster given From the
thosedetermine the ids, addresses, given
escriptor clusters determine the ,.determine ..- addresses,...

(actually ctual addresses of which retrieve the
descriptor cluster ids) the records backends and required
ids), which in those disks to records.whose recordsintoeo
correspond tc clusters, search.
the given may satisfy

the request.request.....

Boolean

Retrieval Expressuion
Request Descriptor of Cluster Ids Address Addresses Record ResultsSearch Descriptor" search Generation ProcessinE

Ids

Figure 2. Execution Phases of a Retrieval Request

- U -

PAGE 6

In our example, there are four descriptors corresponding to the request;

namely,

(CITY-Columbus), (20001-<SALARY=<25000),

(25001-<SALARY-<30000), (1-<SuRVIC-<I5).

In order to save space and to save processing time each descriptor is identi-

fied by a descriptor id. For example,

Descriptor Descriptor Id

(CITY-Columbus) DIS

(20001-<SALARY-<25000) D125

(25001-<SAIARY-<30000) D126

(l-<SERVICE-<15) D250

Thus the output of the descriptor search phase is the Boolean expression of

descriptor ids

D15 and (D125 or D126) and D250 (1)

corresponding to

20001 -(SALARY-<25000)

(CITY-Columbus) and or and (II=<SERVICE=<15)

(25001=<SALARY=<30000)

which identifies two clusters.

The next phase, cluster search, must take the Boolean expression in (1)

and actually determine the corresponding clusters. As with descriptors.

clusters are also identified by ids, known as cluster ida, for example

Descriptor Ids Cluster Id

D15, D125, D250 C17

D15, D126, D250 C22

The final two phases, see Figure 2, are address unuion (to find the

disk addresses, e.g., A3546 and A3547, corresponding to each cluster id,

e.g., C17) and record processing (to retrieve the actual records so addressed

- --- I.

PAGE 7

and extract the fields required).

Descriptor search, cluster search and address generation together form

the major portion of directory musnaent.

Concurrent processing of requests is facilitated in NDBS. Executing one

request at a time at a backend will frequently leave the backend's CPU idle

while waiting for its disk to access records. Since the XDBS hardware organ-

ization provides multiple disk drives per backend, it is possible for a back-

end to support concurrent processing of requests from different users.

However, a mechanism to control concurrent access to data must then be pro-

vided. Because all directory management is based on the concept of clusters,

it is also logical to design a concurrency control mechanism based on clus-

ters. Thus, the mechanism used in NDBS is ceniered on the concept of clus-

ters. In particular, the concurrency control mechanism will lock clusters to

prevent conflicting access to the same clustered data.

The general method used by HDBS in processing a retrieval request is

described and summarized in Figure 3. In the next section, we will show how

this processing is carried out among the controller and the backends.

1.1.2 Distribution of Request Execution Among Controller and Backends

In the previous section, we mentioned how the database was distributed

across the backends. However, we did not discuss the placemnt 2L diru

aa and the distribution of the directoru in directory manage-

ment. In order to minimize the time for directory management and to facili-

tate record update, the directory data is duplicated at all backends. On the

other hand, the directory processing is not duplicated at each backend. For

instance, the descriptor search phase is divided &mong the backends. Each

backend sust find a different subset of descriptor ids. It then broadcasts

its results to all the other backends.

In Figure 4, we susnarise how directory management is performed at a

backend. A retrieval request is received from the controller. Then thej backend performs a descriptor search on its porti&a of the request and broad-

I- -7_

PAGE 8

II original function

I I future function

oolean
Retrieval Expression Ds
Request Descriptor Of CutrAddress Addresses Record ..eLults

Search Descriptor- Search Generation Processing

Ready for Processing

I Clstr ~uhrizgd1 Concurrencyl
Aces Cluster IdslControl

Figure 3. Execution of a Retrieval Request in the Presence
of Access Control and Concurrency Control

*1 PAGE 9

II IIThe (I-l)-th Backend

- ecitr Descriptors Found
Foun at he a alltheother

a other Backends

DescriptorLca
1WDescripto Found at escriptor esritdslutId Ad

Search ths SearchSerhn -
wBackend to

00

Descriptors Descriptors Found
4.1Found at the at all the other

i-th Backend Backends
are Broadcast

toe aceths
________________ The (i+1)-th Backend

Figure 4. Overview of Directory Management
as Seen From The i-th Backend

PAGE 10

casts the resulting descriptor ida to the other backends. After the descrip-

tor ida from all other backends have been received, cluster search is used to

determine the clusters. Finally, address generation determines the local

disk addresses for records at that backend.

The backend can do more than just retrieve all the records in a cluster.

First, it can select those and only those records that satisfy the request.

For example, the request to find records of employees in Columbus earning

more than $20,000 but not more than $28,000 and with more than 10 but not

more than 15 years experience, requires mse , records from two clusters.

Those clusters are identified by

(CITY-Columbus) and (20001=<SALARY=<25000) and (Il-<SURVIC'<l5)

and

(CITY-Columbus) and (25001-<SALARY-<30000) and (ll-<SERVICE-<15).

All the records will be selected from the first cluster, but only records

with SALARY=($28,000 will be selected from the second cluster.

Often, not all the data in a record is needed to respond to a request.

In this example, only the names of the employees might be required. Thus the

appropriate values must be extracted from the record. The other values may

be discarded. Although not shown in this example, NDBS can perform various

types of aggregate onerations on a set of values instead of just keturning

the raw values. An example would be to find the average salary of employees

who live in Columbus. Thus after selecting the appropriate records and ex-

tracting the salary values, NDBS would compute the average. The steps of

record processing are sumarized in Figure 5.

Referring to Figure 6, the execution of a user request can now be sum-

marized as follows. The user submits a request to the host which transmits

that request, in an internal form, to the controller of NDBS. The controller

parses the request and then broadcasts it to the backends. Each backend de-

termines its portion of the descriptor ids and broadcasts the results to the

other backends. Each backend also determines the clusters that sust be

searched and the corresponding local disk addresses. Then the appropriate

records are selected, values extracted and results sent back to the controll-

er. When the controller has received the results from all the backends, it

PAGE 11

Record Processing

Local Disk Record Records IValue Values Aggregate Results
Addresses Selection operation.,-
(from Directory
Management)

Figure 5. Record Processing Function

PAGE 12

Host

MDBS
\a

Con- MB
troller

/ \".. Parallel

/\
/ _

Back- *.* Back- Back-

end end end

Broadcast

Broadcast Mode

-Controller-to-all-backends operation (e.g., query)
• Backend-to-all-other-backends operations (e.g., transferring
descriptor ids)

Parallel Mode

* Response-of-each-backend-to-controller operations (e.g., forwarding
retrieved data)

Figure 6. Modes of MDBS Operations

PAGE 13

performs any aggregate operation required and then forwards the final results

to the host for return to the user.

1.2 The Implementation Strategy - ha andWhy?

It seems only reasonable to develop most systems in stages. For proto-

type systems such an approach seems even more important. Thus we have

planned to develop several versions of fDBS. We chose to begin with an im-

plemention of a very simple system.

1.2.1 Version I - A Very Simple System: Single Mini Without Concurrency

Control and With Simplified Directory Management

We started the implementation effort with a system which was intended to

be as simple as possible. The aim was to get something running so that we

could gain some experience with both the MDBS design and our new computer

systems. Thus we had chosen to simplify the design as much as possible.

MDBS-I, which is in the final stages of implementation, executes only a sin-

gle request at a time. It runs on a single computer. There is no distinc-

tion made about the slave and master. In other words, there is no separate

controller. Directory management is simplified by storing all directory data

in the main memory. There are no concurrent execution of requests. Since

the whole system runs as a single operating system process, the interface

with the operating system is minimized.

1.2.2 Version II - A Simple System: Single Mini With Concurrency Control

The second version, whose details have been designed and the implementa-

tion effort is under way, will allow concurrent execution of requests, but

will still be restricted to a single mini. We plan to use the services of

our operating system to facilitate this concurrent processing. Thus we vill

use the capability of creating independent concurrent processes which coinun-

icate among themselves. These processes will execute in parallel so that

MDBS-II will be able to execute requests in parallel. This version will

allow us to gain experience with the problem of multiple processes and the

problem of concurrency control.

4,
_ _ , , 1

PAGE 14

1.2.3 Version III - The First "Real" System : Multiple Minis With

Concurrency Control

After NDBS-II is working, we will transfer the system to our real envi-

ronment including a controller (i.e., VAX 11/780) and several backends (PDP

11/44s). This transfer should be fairly easy, since the major changes re-

quired will be to replace comunications between processes in one computer by

comunications between processes running on different computers. This ver-

sion will allow us to see how the intercomputer communication overhead is

going to affect system performance. This system, MDBS-III, will still not be

sufficient for a full MDBS, since it has a very simplified directory manage-

sent subsystem. However, it will allow us to begin preliminary testing of

the MDBS design.

1.2.4 Version IV - The Real System With "Good" Directory Management

This version, whose design details are being proposed, will include a

fully implemented directory management subsystem utilizing the secondary mem-

ories, it will be a complete prototype system, except for the lack of access

control features. This system, MDBS-IV, will be the one on which we will try

to validate the simulation studies used in the development of the original

design.

1.2.5 Version V - The Full System With All the Designed Features Included

The final version will incorporate access control in the backends and a

friendly user-interface in the controller or host computer.

1.3 An Overview oL bs eLi Imnleentation

In this section, we give an overview of the implementation effort to

date. The recent implementations are described in more detail in later

PAGE 15

chapters. Details on our earlier implementation effort can be found in

[Kerr82].

1.3.1 A Top-level View of HDBS

The MDBS is viewed in terms of controller functions and backends func-

tions (see Figure 7). In the following two sections, we describe the func-

tions performed in the controller and the backends, respectively. Then we

will describe the process of request execution for four types of request:

delete, insert, retrieve and update.

There are, however, some essential functions which are not included in

either of these divisions. Among these are system generation, system

startup/shutdown, and other system utilities such as database load, file gen-

eration and database reorganization. These functions will generally be ini-

tiated in the minicomputer which serves as the MDBS controller. They are

not, however, a logical part of the major functions of the controller.

1.3.2 Functions of the Controller

The HDBS controller consists of three categories of functions: request

preparation, insert information generation and post processing (see Figure 7

again). The request preparation functions are those which must be performed

before a request or a transaction can be broadcasted to the backends. For

example, each request must be parsed and checked for syntax errors before it

can be broadcasted to the backends. The insert information generation

functions are those which must be performed during the processing of an in-

sert request to furnish additional information required by the backends. For

example, a backend should be selected for storing the record being inserted

into the secondary storage of the backend. The Post Processing functions are

those which must be performed after replies are returned from the backends,

but before the results of a request or a transaction are forwarded to the

host machine. For example, the results for a request returned by each back-

end should be collected. After receiving the results from each backend, the

response to the request can be sent to the host machine.

PAGE 16

The Multi-Backend Database Systemi
(?4DBS)

The Role of
Computers in IOOLE BACKcENDS

Carrying outR
the Functions

Categories 1 q;T'sl: -,SR O ST WD CI RFC

of Functions \jTION iR~AT ION DRCTRIRCOD CNCRE

Figure 7. The MDBS Structure

PAGE 17

We note that there are no concurrency control functions in the controll-

er. Since user requests are carried out by the backends, there is no need

for concurrency control in the controller. The controller must only associ-

ate sequence numbers with the user requests.

1.3.3 Functions of each Backend

Each backend in MDBS consists of three categories of functions:

directory management, record processing and concurrency control (also in Fig-

ure 7). The directory manement functions perform descriptor search, clus-

ter search, address generation and directory table maintenance. For example,

these functions find the ids of descriptors corresponding to a set of predi-

cates (keywords), determine the cluster id corresponding to a set of descrip-

tors and determine the secondary storage addresses of the records in a clus-

ter. The record processing functions perform record storage, record retriev-

al, record selection and attribute value extraction of the retrieved records.

For example, these functions store records into the secondary storage,

retrieve records from the secondary storage and select the records that

satisfy a query from a set of records. The concurrency control functions

perform operations which ensure that the concurrent and interleaved execution

of user requests will keep the database consistent. For example, these fuc-

tions schedul,! a user request for execution based on the set of clusters

needed by ihe request. In this chapter, we do not consider concurrent and

interleaved execution of user requests. The concurrency control mechanism is

described in Chapter 4.

1.3.4 Request Execution in MDBS

In this section, we describe briefly the sequence of actions taken by

MDBS in executing insert requests and non-insert requests (delete, retrieve

and update). The sequence of actions is described in terms of flow of data

and in terms of the functions categorized above. The sequenece of actions

taken by MDBS in executing each of the four types of request: insert, de-

lete, retrieve and update is described in more detail in the later chapters.

1~II

PAGE 18

(A) Sequence of Actions for an Insert Request

The sequence of actions for an insert request is shown in Figure 8.

Some flow of data is common to all types of request, shown as dotted lines in

the figure. Thus, we first describe these common data flows. The arrow

entering Request Preparation indicates that a request or a transaction is the

input to this module. The input comes from the host machine. Request Pre-

paration sends the number of requests in a transaction to Post Processing.

The number of requests in a transaction is used by Post Processing to deter-

mine whether processing of the transaction is complete. Request Preparation

also sends a request (transaction) along with error messages to Post Process-

ing if the request (transaction) has syntax errors. Post Processing collects

all the results related to a request (transaction) and sends the results to

the host machine. The arrow leaving Directory Management indicates that the

descriptor ids found by a backend are sent to the other backends. The arrow

entering Directory Management indicates that the descriptor ids found by the

other backends are sent to this backend.

We now describe the flow of data specific to insert requests, shown as

solid lines in Figure 8. After receiving, parsing and formatting a request,

Request Preparation sends the formatted request to Directory Management in

the backtnds. We recall that the record part of the request consists of many

keywords and each backend performs the descriptor search for a different set

of keywords in the record. Thus, Directory Management at a backend finds the

ids of descriptors corresponding to the set of keywords to be processed at

the backend and broadcasts the ids to the other backends. After receiving

the descriptor ida sent by the other backends, Directory Management deter-

mines the cluster id, if any, of the cluster to which the record belongs. It

then sends the cluster id to Insert Information Generation in the controller.

Insert Information Generation determines the backend at which the record is

to be inserted and broadcasts a message to Directory Management in the back-

ends. The backends that are not to insert the record discard the record.

Directory Management in the backend that is to insert the record determines

the secondary storage address for inserting the record. That address and the

formatted request are then passed to Record Processing. Record Processing

stores the record into the secondary storage and sends a completion signal to

PAGE 19

I THlE CONTROLLER

POST REQUEST
PROCES SING PREPARATION

CINSERT
INFORMATION
GENERAT ION

COMtMUNICATION I. TE ACE

I I COMKUNICATION INTERFACE1

A BACKEND

Figure 8. Sequence of Actions for an Insert Request

PAGE 20

Post Processing in the controller. Post Processing then @ends a completion

signal to the host machine.

(B) Sequences of Actions for Non-insert Requests

The sequences of actions for non-insert requests are all similar. Thus,

we describe the sequence of actions only for a retrieve request in this sec-

tion. This is shown in Figure 9. (Here, we assume that the retrieve request

was not caused by an update request. Details on retrieve requests caused by

update requests are given in Chapter 2.)

Request Preparation, after receiving, parsing and formatting a request,

sends the formatted request to Directory Management in the backends and the

aggregate operators, if any, in the request to Post Processing in the con-

troller. We recall that the query part of the request consists of many pred-

icates and each backend performs the descriptor search for a different set of

predicates in the query. Thus, Directory Management at a backend finds the

ida of descriptors corresponding to the set of predicates to be processed at

the backend and broadcasts the ids to the other backends. After receiving

the descriptor ida sent by the other backends, Directory Management deter-

mines the cluster ids. Finally, it determines the secondary storage ad-

dresses of the records in the clusters so identified and sends the record ad-

dresses and the formatted request to Record Processing. Record Processing

fetches the records from the secondary storage and selects the records that

satisfy the query. It then extracts the values from the selected records.

If aggregation is not needed, Record Processing sends the extracted values to

Post Processing in the controller. Post Processing collects all the results

related to the request and sends the results to the host machine.

If some aggregations are to be applied, Record Processing, after select-

ing the records and extracting the values, applies the aggregate operations

on the set of values. It then sends the results to Post Processing in the

controller. The partial results from all the backends are collected in Post

Processing. Post Processing performs the aggregate operations on the partial

results and sends the results to the host machine.

PAGE 21

, I , ,

I THE CONTROLLER I

INFORMATION
GENERATION

COMLNICATION INTERFACE

___II

I F--

I I COMMUNI CATION INTERFACE

-II

A BACKEND

Figure 9. Sequence of Actions for a Retrieve Request

•Lt

PAGE 22

1.3.5 The Role of the Comunication Interface

Let us now describe the boxes labeled Communication Interface in Fig-

urea 8 and 9. They provide the mechanim for commnications between two

functions in two different computers. There is a ccumunication interface in

each computer, i.e., the controller and the backends, since certain functions

in each computer must cosmunicate with certain functions in the other com-

puters.

1.4 The Oraanization of UhM &esL oL The Regrt

We describe in detail the DBS implementation in the rest of this re-

port. In Chapter 2, we give a functional description of HDBS. The controll-

er and the backends functions are described in detail in Chapters 3 and 4,

respectively. A method for testing MDBS is described in Chapter 5. Finally

in Chapter 6, we summerize our software engineering experience.

PAGE 23

2.0 A FUNCTIONAL DESCRIPTION OF MDIS

As described in the previous chapter and depicted in Figure 7, MDBS is

viewed in terms of controller functions and backend functions. In this

chapter, we describe the functions of the controller and backends in detail.

We also describe in detail the process of request execution for four types of

request: delete, insert, retrieve and update.

2.1 Functions of the Controller

The MDBS controller functions are considered in three categories:

request preparation, insert information generation and post processing. (As

described in Chapter 1, there are no concurrency control functions in the

controller.) In the following, we describe the functions of each of the three

categories. We will not discuss the system functions such as system

startup/shutdovn in this section. We will describe a package for testing

HDBS in Chapter 5. Other details on the system functions such as database

load and file generation can be found in [Kerr82].

2.1.1 The Request Preparation Functions

These are the functions which must be perfomed before a request or a

transaction can be broadcasted to the backends. The names of the functions

are: Parser and Request Composer.

(A) The Parser Function

This function parses the requests and checks for syntax errors. Input

to Parser comes from the host machine. The input is either a request or a

transaction. If the input request (transaction) is parsed correctly, then

the parsed request (parsed transaction) is passed to Request Composer. If

the input request (transaction) contains syntax errors, Parser returns the

request (transaction) along with error messages to Reply Monitor. MIID does

not execute a transaction unless all the requests in the transaction are

parsed correctly, i.e., a transaction is rejected if one or more requests

contain syntax errors.

PACE 24

For retrieve requests with aggregate operators, Parser @ends the type of

aggregate operators (AVG, MAX, MIN, SUM, COUNT) to Aggregate Post Operation

where the specific aggregate operations are to be performed on the partial

results to be returned by the backends.

When the input to Parser is a transaction, Parser passes the number of

requests in the transaction to Reply Monitor. The number of requests in a

transaction is used by Renly Monitor to determine whether the processing of

the transaction is complete.

(B) The Request Composer Function

Before describing this 2i.nction, let us review the update requests in

MDBS. The syntax of an update request is:

UPDATE Query Modifier

where the modifier specifies the kinds of modification that need to be done

on records that satisfy the query. The modifier may be one of the following

five types:

Type-O : <attribute-constant>

Type-I : <attribute=f(attribute)>

Type-II : <attribute-f(attributel)>

Type-III : <attribute-f(attributel) of Query>

Type-IV : <attribute-f(attributel) of Pointer>

Let a record whose attribute is being modified be referred to as the

record being modified. Then, a type-O modifier sets the new value of the at-

tribute being modified to a constant. A type-I modifier sets the new value

of the attribute being modified to be some function of its old value in the

record being modified. A type-II modifier sets the new value of the attri-

bute being modified to be some function of some other attribute value in

the record being modified. A type-Ill modifier sets the new value of the at-

tribute being modified to be some function of some other attribute value in

another record uniquely identified by the query in the modifier. Finally, a

type-IV modifier sets the new value of the attribute being modified to be

PAGE 25

some function of some other attribute value in another record identified by

the pointer in the modifier.

An example of a type-O modifier is:

<SAL ARY-50000>

This sets the salary in all the recorda being modified to 50000.

An example of a type-I modifier is:

<SALARY=I.1*SALARY>

This raises the salary in all the records being modified by 10Z.

An example of a type-II modifier is:

<MOTHSAL-YEARSAL/12>

This sets the monthly salary in all the records being modified to be a

twelfth of their own yearly salaries.

An example of a type-III modifier is:

<SALARY-SALARY of (FILE-Wife) and (NAME'Tara)>.

This causes the following actions to be taken by HDBS. Using the query

"(FILE-Wife) and (NAME-Tara)", a record is retrieved. Then, the SALARY value

of that record is obtained. This value is used for the salary in all the re-

cords being modified.

An example of a type-IV modifier is:

<SALARY-SALARY of 2000>

which modifies the salary in all the records being modified to that of the

record stored in location 2000. In order to use this type of modifier, the

user must have previously issued a retrieve request which had WITH POINTER

option. We note that, in order to execute an update request containing a

type-III or type-IV modifier, a record must first be retrieved by NDBS on the

basis of a user-provided query or pointer. We now describe the Request Com-

poser function.

This function transforms a parsed request into the form required for

processing at the backends. Request Composer receives each parsed request

(parsed transaction) from Parser. For all requests except updates with

L " - " J - I l | I l b l l r l l

PAGE 26

type-III or type-IV modifier, Request Composer formats the request and sends

it to the backends for processing. For update requests with type-III or

type-IV modifier, Request Composer first generates a retrieve request. It

then saves all the information necessary to generate an update request with

type-O modifier when the value from the retrieve request is received. When

the value is received from a backend, the update request with type-O modifier

will be generated and sent to the backends.

Processing an update request may cause one or more updated records to

change cluster. When this occurs, the old records should be marked for dele-

tion and the updated records should be inserted. Request Composer initiates

the actions required for the insertion of the updated records that change

cluster.

2.1.2 The Insert Information Generation Functions

These are the functions which must be performed during the processing of

an insert request to furnish additional information required by the backends.

The names of the functions are: Backend Selector, Cluster Id Generator and

Descriptor Id Generator.

(A) The Backend Selector Function

When processing an insert request, Backend Selector determines the back-

end at which the record is to be inserted. The backend selection is based on

the criterion that the records in each cluster should be distributed among

the backends. (As described in Chapter 1, the records in each cluster are

spread across the backends to allow the records in the cluster to be accessed

in parallel.)

(B) The Cluster Id Generator Function

In order to save storage and time, each cluster is identified by a clus-

ter id, instead of being identified by a set of descriptors which character-

ise the cluster. Cluster Id Generator produces a new cluster id for a new

cluster.

PAGE 27

(C) The Descriptor Id Generator Function

To further save storage and time, each descriptor is also identified by

a descriptor id, instead of being identified by an attribute and its attri-

bute value (attribute value ranges). Descriptor Id Generator produces a nev

descriptor id for a new descriptor.

2.1.3 The Post Processing Functions

Before the results of a request or a transaction are forvarded to the

host machine, these functions must be performed on the replies returned by

the backends. The names of the functions are: Aggregate Post Operation and

Reply Monitor.

(A) The Aggregate Post Operation Function

When there is an aggregate operator in a retrieve request, each backend

performs the aggregate operation on those records in that backend satisfying

the query. The partial aggregate results are sent to Aggregate Post Opera-

tion by the backends. Parser sends the type of aggregate operator (AVG, AX,

MIN, SUM, COUNT) to Aggregate Post Operation where the partial results are

received from the backends and are combined to give the final result of the

specific aggregate operation. The results are then forwarded to Reply Moni-

tor.

(B) The Reply Monitor Function

This function collects all the results for a request or a transaction,

and forwards them to the host machine. As described earlier, Parser sends

the number of requests in a transaction to Reply Monitor. Reply Monitor uses

this number to determine whether the processing of the transaction is com-

plete.

- -- -.-----

PAGE 28

2.2 Functions of each Backend

Each backend in MDBS consists of three categories of functions:

directory management, record processing and concurrency control (see Figure 7

again). (As in Chapter 1, we do not consider concurrent and interleaved exe-

cution of user requests in this chapter. We describe the concurrency con-

trol mechanism in Chapter 4.) In the following sections, we describe the

functions of each of the first two categories, i.e., directory management and

record processing.

2.2.1 The Directory Management Functions

These functions perform directory operations such as cluster determina-

tion, address generation and directory table maintenance. The names of the

functions are: Descriptor Search, Cluster Search and Address Generation.

(A) The Descriptor Search Function

This function determines the descriptor ids of the descriptors that

satisfy the predicates (keywords) in a query (record). Input to Descriptor

Search comes from Request Composer in the controller, in the form of a for-

matted request. As described in detail in [Hsia8la], if there are N backends

processing a query (record) with X predicates (keywords), then each backend

performs the descriptor search on XI/N predicates (keywords) and broadcasts

the descriptor ida to the other backends.

(B) The Cluster Search Function

This function determines either the cluster id of the cluster to which a

record belongs (for an insert request) or the cluster ids of the clusters

whose records satisfy a query (for a non-insert request). Input to Cluster

Search are the descriptor ids found by Descriptor Search in all the backends.

For insert requests, Cluster Search passes the cluster id, if any, to Backend

Selector in the controller. For non-insert requests, the cluster ida are

passed to Address Generation.

PAGE 29

(C) The Address Generation Function

This function determines either the secondary storage address for stor-

ing a record when processing an insert request or the addresoes of all the

records in a set of clusters when processing a non-insert request. For in-

sert requests, Backend Selector in the controller dezermines which backend is

to insert the record. When a backend is selected, Address Generation in that

backend determines the secondary storage address for record insertion. That

address and the formatted request are then passed to Physical Data Operation.

For non-insert requests, Cluster Search passes the cluster ids to Ad-

dress Generation. Address Generation finds the addresses of the records in

these clusters and passes the addreses and the formatted request to Physical

Data Operation.

2.2.2 The Record Processing Functions

These functions perform operations such as record selection and field

extraction of the retrieved records. The names of the functions are:

Physical Data Operation and Aggregate Operation.

(A) The Physical Data Operation Function

Input to this function comes from Address Generation. The input is a

set of secondary storage addresses and a formatted request. Physical Data

Operation performs different actions depending on the type of the request.

For an insert request, Physical Data Operation stores the record being in-

serted into the secondary storage.

For a non-insert, i.e., delete, retrieve or update, Physical Data Opera-

tion fetches the records from the seconi.ary storage and selects the records

that satisfy the query in the request. It then performs the intended opera-

tion on the basis of the type of the non-insert request. For delete re-

quests, Physical Data Operation marks the selected records for deletion.

For retrieve requests, Physical Data Operation extracts the values from

the selected records and passes the values either to Aggregate Operation, if

an aggregation is to be applied, or to Reply Monitor, if aggregation is not

- -~-~. - - ~ -- - -~-

PAGE 30

needed. For retrieve requests caused by update requests with type-Ill or

type-IV modifier, Physical Data Operation sends the results to Request Com-

poser in the controller. The results will be used in the controller to form

update requests with type-O modifier from the update requests with type-Ill

or type-IV modifier.

For update requests, Physical Data Operation updates the selected

records and returns to the secondary storage those updated records that have

not changed cluster. If one or more records change clusters Physical Data

Operation marks the old records for deletion and sends the records that have

changed cluster to Request Composer in the controller. Request Composer ini-

tiates the actions required for the insertion of these records into their new

clusters.

(B) The Aggregate Operation Function

This function performs the partial aggregate operations in retrieve re-

quests. Input to Aggregate Operation comes from Physical Data Operation in

the form of a set of values and the aggregate operators to be applied.

Aggregate Operation applies the aggregate operations on the set of values and

passes the results to Aggregate Post Operation in the controller.

2.3 Request Execution in MDBS

In this section, we describe in detail the sequence of acti.td taken by

MDBS in executing each of the four types of request: insert, delete,

retrieve and update. As in Chapter 1, the sequence of actions is described

in terms of flow of data and in terms of functions presented earlier.

2.3.1 Sequence of Actions for Insert Requests

The sequence of actions for an insert request is shown in Figure 10. As

in Chapter 1, we first describe the flow of data common to a7l types of re-

quest, shown as dotted lines in Figure 10. The arrow entering Parser indi-

cates that a request or a transaction is the input to this function, The

PAGE 31

THE CONTROLLER

REPLY -- - - - - - - AR R

M.ONITOR PRE

t:

REQUEST

ISERSE
CLQSTER rSR

1 ENERATOR GENER.Arioj

C

M L

vr

ERR!

RE-R

NEOC _SSINC

A BACE\'D

Figure~~~~~~~ 1.SqecofAtnsoRnnsrRees

PAGE 32

input comes from the host machine. Parser sends the number of requests in a

transaction to Reply Monitor. The number of requests in a transaction is

used by Reply Monitor to determine whether the processing of the transaction

is complete. Parser also sends a request (transaction) along with error mes-

sages to Reply Monitor if the request (transaction) has syntax errors. Reply

Monitor collects all the results related to a request (transaction) and sends

them to the host machine. The arrow leaving Descriptor Search indicates that

the descriptor ids found by a backend are sent to the other backends. The

arrow entering Cluster Search indicates that the descriptor ids found by the

other backends are sent to this backend.

We now describe the flow of data specific to insert requests, shown as

solid lines in Figure 10. Parser, after receiving and parsing a request,

sends the parsed request to Request Composer. After transforming the parsed

request into the form required for processing at the backends, Request Cor-

poser sends the formatted request to Descriptor Search in the backends. We

recall that the record part of the request consists of many keywords and each

backend performs the descriptor search for a different set of keywords in the

record. Thus, Descriptor Search at a backend finds the ids of descriptors

corresponding to the set of keywords to be processed at the backend,

broadcasts the ids to the other backends and forwards them to Cluster Search.

Cluster Search determines the cluster id, if any, of the cluster to which the

record belongs. It then sends the cluster id to Backend Selector in the con-

troller. Backend Selector determines the backend at which the record is to

be inserted and broadcasts a message to Address Generation in the backends.

The backends that are not to insert the record discard the record. Address

Generation in the backend that is to insert the record determines the secon-

dary storage address for storing the record. That address and the formatted

request are then passed to Physical Data Operation. Physical Data Operation

stores the record into the secondary storage and sends a completion signal to

Reply Monitor in the controller. Reply Monitor then sends a completion sig-

nal to the host machine.

2.3.2 Sequence of Actions tor Delete Requests

The sequence of actions for a delete request is shown in Figure 11.

ml i| i

PAGE 33L

ITHE CONTROLLER

RPYPARSER
'

ChC

REQUEST
COMYOSER

CLSTR IN~iER1T
T'LtTAYTOR

OESCIPOR\

C0'2&2-1CAT1ON !NTE.RFACE

CO --Rr~l ATTON tN-EqFACF

OPERATION

RECORD PROCESSINGF

A BACKEND

Figure 11. Sequence of Actions for a Delete Request

PAGE 34

Parser, after receiving and parsing a request, sends the parsed request to

Request Composer. After transforming the parsed request into the form re-

quired for processing at the backends, Request Composer sends the formatted

request to Descriptor Search in the backends. Descriptor Search at a backend

finds the ids of descriptors corresponding to the set of predicates to be

processed at the backend, broadcasts them to the other backends and forwards

them to Cluster Search. Cluster Search determines the cluster ids and gives

them to Address Generation. Address Generation determines the secondary sto-

rage addresses of the records in these clusters and sends the record ad-

dresses and the formatted request to Physical Datp Operation. Physical Data

Operation fetches the records from the secondary storage. It then selects

the records that satisfy the query, marks the selected records for deletion,

returns them to the secondary storage and sends a completion signal to Reply

Monitor in the controller.

2.3.3 Sequence of Actions for Retrieve Requests

The sequence of actions for a retrieve request is shown in Figure 12.

Parser, after receiving and parsing a request, sends the parsed request to

Request Composer and the aggregate operators, if any, in the request to Ag-

gregate Post Operation. The sequence of actions taken by Request Composer,

Descriptor Search, Cluster Search, Address Generation and Physical Data Oper-

ation (up to the selection of the records that satisfy the query) is the same

as the other non-insert request, i.e., delete. Thus, we do not repeat it

here.

If the retrieve request was not caused by an update request, Physical

Data Operation extracts the values from the selected records. If aggregation

is not needed, Physical Data Operation sends the extracted values to Reply

Monitor in the controller. If some aggregations are to be applied, Physical

Data Operation passes the extracted values along with the aggregate operators

to Aggregate Operation. Aggregate Operation applies the aggregate operations

on the set of values and sends the results to Aggregate Post Operation in the

controller. The partial aggregate results from all the backends are collect-

ed in Aggregate Post Operation. Aggregate Post Operation performs the aggre-

gate operations on the partial results. The results are then forwarded to

PAGE 35

THE CON4TROLLER

- AGGREGATE

PAST!R Z~SE~

CPERA Ml REQUEST

SECOMPOSER

k!COROTO CENCESSTNG

A BACKENCE .I
Figure 12 Sequenceof Actio S Eor CaRtiv eus

t ~ ~ ~ ~ 2n.C T O ______________ ________________

PAGE 36

Reply Monitor. Reply Monitor collects all the results related to the request

and sends the results to the host machine.

If the retrieve request was caused by an update request, Physical Data

Operation sends the result, if any, to Request Composer in the controller.

(The results will be used in the controller to form an update request with

type-O modifier from the update request with type-Ill or type-IV modifier.)

2.3.4 Sequence of Actions for Update Requests

The sequence of actions for an update request is shown in Figure 13.

Parser, after receiving and parsing a request, sends the parsed request to

Request Composer. The sequence of actions will be different depending on the

type of modifier in the update request. We first describe the case where the

modifier is not type-III or type-IV. In this case, the sequence of actions

taken by Request Composer, Descriptor Search, Cluster Search, Address Genera-

tion and Physical Data Operation (up to the selection of the records that

satisfy the query) is the same as the other non-insert request, i.e., delete.

Thus, we do not repeat it here.

Physical Data Operation updates the selected records. It then uses Des-

criptor Search to determine which updated records have changed cluster.

Physical Data Operation stores those updated records that have not changed

cluster into the secondary storage. It will then send a completion signal to

Reply Monitor in the controller if no updated record has changed cluster.

If one or more updated records change cluster, Physical Data Operation

marks the old records for deletion and sends the records that have changed

cluster to Request Composer in the controller. Request Composer initiates

the actions required for the insertion of these records into their new clus-

ters. After these records are inserted, the original update request is com-

plete.

If the modifier in the update request is type-III or type-IV, Request

Composer in the controller first generates a retrieve request. It then saves

all the information necessary to generate an update request with type-0 mod-

THE CONTROLLERPAE7

MONITORPARSER

REQUEST
COMPOSER

C/ LUSTER INrSERT

COCLNT CAT ION 'NTERF. .

AODRSS CUSER DSCIPO

GENERATIA SEACSARC

Figure ~ ~ ~ ~ ~ DRCTR 13.A SeNneo cin o nUdt eus

- -~------ ____________________________PHYSICAL---

PAGE 38

ifier when the value from the retrieve request is received. When Request

Composer receives the value from Physical Data Operation, it generates the

update request with type-O modifier and sends it to the backends. After this

new update request is executed to completion, the original update request is

complete.

2.4 Process Structure of MDBS

Most operating systems provide mechanisms for allowing concurrent execu-

tion of different processes. These mechanisms include primitives for commun-

ication and synchronization among processes. Process communication and syn-

chronization primitives of the operating system are the basic system primi-

tives that MDBS-II utilizes for concurrent execution of multiple requests as

well as concurrent control of common resources.

2.4.1 Two Alternative Process Structures for Implementing MDBS

Process and synchronization primitives provided by the operating systems

may be characterized as either message-oriented or procedure-oriented, de-

pending on how they implement the notion of process and synchronization

[Laue79]. We could use either approach for implementing MDBS.

Using a message-oriented approach, there would be a fixed number of

processes (one process per MDBS activity). Directory management, for exam-

ple, may be implemented as a process. Synchronization of directory manage-

ment activities may be implemented by passing messages among processes.

There would be a relatively limited amount of direct sharing of data in the

memory among processes. Processes for each activity would be created when

MDBS is started up. They would be deleted only when MDBS is shut down.

Using a procedure-oriented approach, there would be a varying number of

processes (one process per user). Synchronization of user activities may be

implemented by direct sharing and locking of comon data in the main memory.

Processes would be rapidly created and deleted.

PAGE 39

2.4.2 The Choice of Message-oriented Approach to Implement fDB8

The functional composition of MDBS described in the previous sections

allows either approach, message-oriented or procedure-oriented, to be used

for implementing MDBS. However, we have chosen to use message-oriented ap-

proach for the first implementation of MDBS-II. In this section, we give the

rationale behind our choice.

There are two major problems associated with the procedure-oriented ap-

proach [Ston8l]:

(1) Process switch overhead - When a process must be put to wait, a pro-

cess switch is necessary in order to run another process. Process

switching is costly because the information related to the blocked

process must be saved and the processor scheduler must conduct con-

siderable work to choose the next process to run. Since the proce-

dure-oriented approach causes more process switches than the

message-oriented approach, the process switch overhead is higher in

this approach.

(2) Critical sections - Some processes have critical sections in which

holds on locks are placed. If the processor scheduler deschedules a

process while it is In its critical section holding some locks over

some resource, all other processes will be queued up behind the

locked resource. Thus, the database system performance will be de-

graded.

The real-time operating system, RSX11, being used in NDBS facilitates

message passing. It also allows a process to receive messages from multiple

proceses. Because of the aforementioned two problems with the

procedure-oriented approach and because of the environment provided by RSX11,

we have decided to use the message-oriented approach.

PAGE 40

3.0 AN IMPLEMENTATION OF TRE CONTROLLER FUNCTIONS

3.1 Desigr and Implementation Goals for the Controller

The primary goal in designing and implementing the controller subsystem

of MDBS is to alleviate the controller limitation Problem, i.e., to limit the

amount of work that the controller must perform. The choice of a solution to

the controller limitation problem is prompted by another design and implemen-

tation goal for MDBS, that of minimizing coinunication amons the backends and

between the backends and the controller. Without increasing workload and ex-

cessive coimunication, the throughput of MDBS will continue to increase as

additional backends are added.

The controller limitation problem occurs in RDBM [Auer8O], a relational

database machine, where a general-purpose minicomputer is used to control the

different hardware components of the system and to pre-process user requests.

Request pre-processing includes a detailed analysis of the request to deter-

mine the pages in the secondary memory to be accessed. The speed of the min-

icomputer is therefore a limiting factor to the throughput of RDBM. Consider

a simplified example where preprocessing a user request requires 10 seconds

of CPU time at the minicomputer, regardless of the number of backends in the

system. The throughput rate of RDBM is limited to 6 requests per minute.

Another view of the controller limitation problem is from the perspec-

tive of response time. The total response time of the system may be viewed

as the sum of controller execution time and backend execution time. Adding

more backends can decrease the backend execution time, but controller execu-

tion time remains constant. So in order to minimize request execution time,

we must also minimize controller execution time.

Our controller design is based on the principle that the major portion

of the MDBS workload should be distributed among the backends. In adherence

to this principle, the controller is conceptually simple and includes primar-

ily those functions which cannot be performed by the multiple backends.

PAGE 41

3.2 The Concept of "Traffic Unit"

Input to NDBS originates from a user working at some host computer. The

host computer translates the user's instructions into the MDB8 Data Manipula-

tion Language (DML) and transmits the translated requests to MDBS. This

transmission or "traffic" may take two forms: it may be a ui.le reaguest, or

it may be a transaction. Recall that in MDBS terminology, a transaction is

defined to be a pre-specified set of requests which the user may use repeat-

edly.

In order to generalize the description of input to 1DBS, we introduce

the concept of a traffic unit. A traffic unit may be a single request or a

transaction. The identification of a traffic unit is important to the host,

since it must return to the user all output from HDBS associated with the

traffic unit. The recognition of a traffic unit as a single request or as a

transaction is also important to MDBS, since transactions must be processed

in a manner which preserves the consistency of the database. Since the

traffic unit is recognized in the host, we assume that the host will associ-

ate with each traffic unit currently in the system a unique identifier, which

we call the traffic id.

3.3 The Structure 9LThe Controller

The MDBS Controller is implemented in three functional categories:

Request Preparation, Insert Information Generation, and Post Processing. The

Request Preparation functions include those which must be performed before a

request or transaction can be broadcasted to the backends. The Insert Infor-

mation Generation functions include those which must be performed during the

processing of an insert request to furnish additional information required by

the backends. The Post Processing functions include those which must be per-

formed after replies are returned from the backends, but before results of a

request or a transaction are forwarded to the host machine. These three ca-

tegories of functions have been described in Chapter 2 of this report. In

this chapter, we present details of the implementations of these functions.

.. .-- - L" " - -I '

PAGE 42

3.3.1 The Request Preparation Functions

The Request Preparation functions include the Parser and Request Com-

poser. The Parser function parses the requests and checks for syntax errors.

The Request Composer function transforms a parsed request into the form re-

quired for processing at the backends. These functions have been described

in Section 2.1.1. Here, we emphasize the implementation.

(A) The Parser Function

Parser does both lexical and syntactic analyses of the MDBS DML state-

ments. Input to Parser is in terms of a traffic unit, i.e. either a single

request or a group of requests which constitute a transaction. As described

in Section 2.1.1, the various outputs of the parser are the error messages

and aggregation operators to the Post Processing functions, and correctly

parsed requests to the Request Composer function.

The lexical analyzer was built using the LEX program available with the

UNIX operating system. LEX [Lesk791 is a lexical-analyzer generator which

can be used to generate programs in C. The input to LEX is a specification

of the tokens of the language (i.e., the tokens of the MDBS DML statements)

in regular expression form, and subroutines which specify the actions to be

taken upon recognition of the tokens. LIX generates a program in the C

language. This program includes a representation of a deterministic

finite-state automaton generated from the regular expressions of the source,

an interpreter which directs the control flow, and the subroutines from the

source. The lexical analyzer produced by LEK is easily interfaced with the

parser generated by YACC.

The parser was built using the YACC program available with UNIX. YACC

EJohn79], "Yet Aother Compiler-Compiler", was used to generate a parser

which calls the LIX-generated lexical analyzer for tokens, and organizes the

tokens according to rules of a grammar. When a rule is recognised, some

specified action is taken. The input to YACC is a specification which in-

cludes declarations of token names, the rewriting rules of the grammar, and

_ F .

PAGE 43

action program. YACC produces a C program, i.e., the parser, according to

the specification. The parser operates like a finite-state automaton with a

stack. The top-of-stack represents the current token. The parser also has

access to the next token, called the lookahead token. Using this simple me-

chanism, the parser can determine whether input DML statements are syntacti-

cally correct. For a detailed explanation of YACC, see [John79].

(B) The Request Composer Function

The Request Composer receives parsed requests from the Parser, and

transforms them into the form required for processing at the backends.

Recall from Section 2.1.1 that update requests with type-Ill and type-IV mod-

ifiers require Request Composer to generate a retrieve request, and a subse-

quent update request with a type-0 modifier. Request Composer also initates

the actions required for the insertion of updated records that have changed

cluster. Since the implementation of Request Composer is straightforward, it

will not be described further.

3.3.2 The Insert Information Generation Functions

Insert Information Generation consists of three functions: Backend Se-

lector, Cluster Id Generator, and Descriptor Id Generator. When processing

an insert request, the Backend Selector function determines the backend at

which the record is to be inserted. The Cluster Id Generator function pro-

duces new cluster ida for new clusters. The Descriptor Id Generator function

produces new descriptor ids for new descriptors. The functions are described

in Section 2.1.2. Before we describe any implementation details, let us re-

view the types of descriptors which are defined in MDBS.

As described in Chapter 1, records in the database are clustered on the

basis of attribute values and attribute value ranges called descriptors.

There are three types of descriptors: type-A, type-B, and type-C. A type-A

descriptor defines an inclusive range of values. Each type-A descriptor is a

conjunction of a less-than-or-equal-to predicate and a greater-than-

or-equal-to predicate. An example of a type-A descriptor is:

((SALARY > 2,000) and (SALARY m< 10,000))

PAGE

A type-B descriptor defines a single value. Each type-B descriptor consists

of an equality predicate. An example of a type-B descriptor is:

(POSITION - Professor)

A type-C descriptor designates an attribute name as a type-C attribute. As

records are inserted into the database, a single-valued descriptor is created

for each unique value associated with the type-C attribute. These descrip-

tors, which are identical to type-B descriptors, are referred to as type-C

sub-descriptors.

Type-A and type-B descriptors, type-C attributes and type-C subde-

scriptors are created at database-load time. No additional descriptors can

be defined after the database is loaded. Type-C sub-descriptors, however,

will be created dynamically as new records are inserted into the database.

(A) The Backend Selector Function

In order to conform to the data placement strategy described in

[Hsia81a], the controller must determine the backend at which the record is

to be inserted. This is the function of Backend Selector.

The information required for selecting the backend is maintained in the

cluster-id-to-next-backend table (CINBT). There is an entry in the table for

each cluster. Each entry contains the number of the next backend into which

records are to be inserted, and the remaining track capacity at that backend.

The CINBT is created at database load time. CINBT is implemented as a data

abstraction. The operations on this data abstraction, insert, find and up-

date, will be invoked by Backend Selector in accessing CINBT.

At the end of the descriptor search phase in processing an insert re-

quest, each backend will send to Insert Information Generation the cluster id

for the record to be inserted. Since the cluster-definition table (CDT) is

not replicated, backends at which no records of a cluster are stored will not

find a cluster id for that cluster. There is also the case where the record

being inserted has caused a new type-C sub-descriptor to be generated; in

PAGE 45

this case, no backends will return a cluster id. When Backend Selector de-

termines that all backends have responded, it will proceed to select the

backend at which the record is to be inserted.

(B) The Cluster Id Generator Function

In order to save storage and time, each cluster is identified by a clus-

ter id. The Cluster Id Generator generates a new cluster id when there is a

new cluster. There are two cases which require a new cluster id. These

cases are described in (A) above.

(C) The Descriptor Id Generator Function

When an insert request contains a record with a type-C attribute and the

value associated with that attribute does not appear in a type-C

sub-descriptor, a new type-C sub-descriptor will be created. The assignment

of descriptor ids is handled by the Controller to prevent coincidental crea-

tion of different descriptor ids by the backends for the same descriptor. If

two simultaneous insert requests requiring the creation of the same type-C

sub-descriptor were processed by the backends independently, different des-

criptor ids would be assigned for the same descriptor. In MDBS, descriptors

must have unique ids.

Descriptor Id Generator will generate a new descriptor id when request-

ed, and broadcast descriptor id and descriptor to all backends. Descriptor

Id Generator will retain a list of all descriptors to which it has assigned

descriptor ids. This list will be consulted each time a request for a new

descriptor id is received in order to prevent coincidental creation of dif-

ferent descriptor ids for the same descriptor. The list will also be purged

periodically.

3.3.3 The Post Processing Functions

The Post Processing functions include Aggregate Post Operation and Reply

PAGE 46

Monitor. The Aggregate Post Operation function performs the final aggregate

operation on partial aggregate results returned from the backends. The Reply

Monitor function collects all the results for a request or transaction, and

forwerds them to the host machine. These functions are described in Section

2.1.?. do further implementation details are presented here.

3.4 The Process Structure of the Controller

Since a message-oriented approach to concurrency control is being used,

we must choose a process structure for the Controller. There are several ob-

vious choices.

First, all of the functions of the Controller can be combined into one

process. This alternative is unattractive because it limits the Controller

to one function at a time. A greater degree of concurrency can be obtained

by using multiple processes and the multiprogramming facilities of the under-

lying operating system. A second alternative is to create a process for each

of the seven functions of the Controller. While this does allow a high de-

gree of concurrency, it is unattractive because of the message-passing

overhead.

A third alternative is to use a smaller number of processes to facili-

tate concurrency, while keeping the message-passing overhead at an acceptable

level. A good candidate organization is one which parallels the categories

of functions which we have described above. There are three processes: the

Request Preparation process, the Insert Information Generation process, and

the Post Processing process. Look again at Figures 10, 11, 12 and 13 from

Chapter 2. These figures show the flow of data between Controller and lack-

ends functions for insert, delete, retrieve, and update requests. Requests

flow from the host through the Request Preparation process to the ackends,

and from the ackends through the Post Processing process to the host. In

the case of insert and update requests, the Insert Information Generation

process will be exchanging data with Directory Managment in the ackends.

Notice that the only interprocess communication in the Controller will be

between the Request Preparation and Post Processing processes. This is the

organization we adopt for the process structure of the MD3I Controller.

PAGE 47

4.0 AN IMPLEMENTATION OF BACKEND FUNCTIONS

As discussed in Section 3.1, a basic design goal of MDBS is to assign as

much work as possible to the backends in order to alleviate the controller

limitation problem. Consequently, the backends functions are more complex

than those of the controller. The functions of the backends fall into three

categories: Directory Management, Record Processing and Concurrency Control.

The Directory Management functions perform directory operations such as

cluster determination, address generation, and directory table maintenance.

According to the incremental development strategy described in Chapter 1, two

versions of Directory Management will be developed. A simplified Directory

Management, where all directory information is stored in main memory, is des-

cribed in [Kerr82]. This simplified Directory Management will be used in the

first three versions of MDBS (14DBS-IV and V will employ a secondary-

memory-based directory management).

The Record Processing functions perform operations such as record selec-

tion and attribute value extraction. The design of these functions is des-

cribed in detail in Section 4.1.

A second design goal for MDBS is that the software should support con-

current execution of requests in the backends in order to maximize system

throughput. The cluster-based concurrency control functions, described in

[Hsia8lb], will be implemented in Version II of MDBS. In Section 4.2, we

present a preliminary design of the Concurrency Control functions.

4.1 The Record Processing Functions

The Record Processing functions are: Physical Data Operation and Aggre- I
gate Operation. The Physical Data Operation function includes a control sub-

function and a subfunction for each type of request. The Retrieve Processing

Subfunction, the Insert Processing Subfunction, the Delete Processing Sub-

function, and the Update Processing Subfunction are invoked by the Control

Subfunction according to the type of request being processed. The Aggregate

Operation function includes subfunctions which accumulate partial aggregate

h

____ _____ ____ ____.. .. f

PAGE 48

results for a request when an aggregate operation is specified for an attri-

bute in the target-list. The Aggregate Operation Subfunctions are invoked

as required by the Retrieve Processing subfunction.

The Retrieve Processing subfunction, the Insert Processing subfunction,

the Delete Processing subfunction, and the Update Processing subfunction are

described in detail in the sections which follow. Here, we give a general

description of the Control subfunction.

The input to Record Processing comes from the Directory Management func-

tions. Input data includes:

(1) a request;

(2) a set of physical (disk) addresses of the tracks which contain

data relevant to the request;

(3) in the case of an insert request, an indicator which is used to

deteruine whether the record is to be placed on a new track.

The specific form of the output varies with the type of request; a general

description of the output is a signal to the Controller that execution of the

request is completed, and the results of execution.

The sequence of events is as follows:

Siep 1: Input is received from Directory Management.

Step 2: The proper subfunction is invoked according to the request

type.

Step 3: The results are sent to the Controller.

Step 4: A completion signal is sent to the Controller.

The results of a retrieve or an update request may include many records.

Thus, the results are buffered independently via a data abstraction, the

BlockBufferAbstraction, which is also described below.

4.1.1 The BlockBufferAbstraction

In HDBS, a cluster may correspond to more than one physical track of

data on the disk. Therefore, for one cluster, there may be more than one

physical address in the set of addresses furnished to Record Processing by

PAGE 49

Directory Management. Data are accessed from or to the disk track by track.

So, a fixed-length buffer can be used for input data.

The amount of output data varies from request to request. This implies

that, given a fixed-length output buffer, the Record Processing functions

must include logic to empty the output buffer when it is filled during execu-

tion of a request. In order to simplify the Record Processing functions, a

data abstraction is used to implement a virtual variable-length output

buffer. This technique has two advantages. First, the Record Processing

functions will not need to include logic to monitor the state of the output

buffer. Second, all the logic required to use the coiunication interface

for sending results to the Controller can be localized in the code of the

data abstraction.

The BlockBufferAbstraction furnishes a data object, the ResultBuffer,

and a set of operations. The operations include a function to reserve a

buffer, a function to stuff data into a buffer, and a function to flush a

partially filled buffer. The actual data structure used by the abstraction

is a fixed-length buffer. However, the stuff operation includes logic to

empty filled buffers. It appears to the user that the output buffer is as

large as required.

4.1.2 The Retrieve Processing Subfunction

A retrieve request has the form:

RETRIEVE Query Target-List [BY clause] [WITH pointer]

The purpose of the Retrieve Processing is to fetch the clusters of relevant

data from the disk, to select from the clusters of relevant data the records

satisfying the query, and to output the results according to the target-list

and the optional BY and WITH clauses.

The algorithm is as follows:

Step 1: Reserve a result buffer.

Step 2: For each address in the set of track addresses furnished by

Directory Management, fetch the track from the disk into the

track buffer in the main memory.

IA i __ _I IIJ I _ J I I

PAGE 50

Step 3: Examine the records in the track buffer one-by-one. If a re-

cord is marked for deletion, disregard it. If a record does

not satisfy the query of the request, disregard it. If a re-

cord satisfies the query of the request, extract the values

for the attribute names in the target-list of the request;

if an aggregate operation is specified for an attribute on

the target-list, invoke the appropriate aggregation subfunc-

tion with the appropriate value. Stuff results from extrac-

tion and/or aggregation into the result buffer. Repeat for

each record in the track buffer.

Step 4: Repeat steps 2 and 3 until the set of track addresses is ex-

hausted.

Step 5: Flush the result buffer.

If the optional WITH clause is included, a pointer or physical address

of the record is stuffed into the result buffer for each record. The option-

al BY clause is used in conjunction with an aggregate operator, as explained

in the next section.

4.1.3 The Aggregation Subfunctions

MDBS supports five aggregate operations on attributes in the target-list

of retrieve requests. These are AVG, SUM, COUNT, MAX and MIN. An example of

a target-list is:

(DEPT. AVG(SALAZY))

No aggregate operator is specified for the attribute DEPT; the values of

DEPT will be retrieved from all records identified by the query. The aggre-

gate operator AVG will be applied to the values of SALARY retrieved from all

records identified by the query. Thus, the average salary will be obtained.

An optional BY clause may be used with an aggregate operator. Assume

that we wish to find the average salary of employees in each department.

This can be achieved by using a retrieve request with the target-list

(AVG(SALAIY)) and the clause BY DEPT.

The aggregation subfunctions are invoked by the Retrieve Processing sub-

PACE 51

function as required. For AVG, a sum of values and a count is accumulated.

Tor SUM, a sum of values is accumulated. For COUNT, a count of values is ac-

cumulated. For MAX and MIN, the maximam and minimum elements are selected.

4.1.4 The Insert Processing Subfunction

The insert request has the form:

INSERT Record

The purpose of the Insert Processing subfunction is to insert the record in

the request into a cluster. The record may be added to a partially-filled

track of data, or may be inserted as the first record of a newly allocated

track. The input to Record Processing for an insert request includes a

new-track indicator. Since only one record is being inserted into one track

of one cluster, Directory Management will furnish only one track address.

The algoritam for the Insert Processing subfunction is very simple

Step 1: If the new-track indicator is off (meaning that the record is

to be added to a track that already contains other records

from the cluster), then fetch the track from the disk into

the track buffer. If the new-track indicator is on, then in-

itialize the track buffer (no data are fetched from the

disk).

Step 2: Insert the record in the request into the track buffer.

Step 3: Store the track buffer on the disk.

4.1.5 The Update Processing Subfunction

The update request has the form:

UPDATE Query Modifier

The modifier in an update request specifies the new value to be taken by the

attribute being modified. The modifier may be one of the types described

below.

Type-0 : <attribute - constant)

Type-I : <attribute - f(attribute)>

Type-Il : <attribute - f(attributel)>

PAGE 52

Type-III : <attribute - f(attributel) of Query>

Type-IV : <attribute - f(attributel) of Pointer>

The Update Processing subfunction handles requests with modifiers of

type-0, I or II. An update request with the modifier of type-Ill or type-IV

is decomposed by the Controller into a retrieve request followed by an update

request of type-0.

The main function of Update Processing subfunction is to select records

satisfying the query and to update the value of the attribute specified by

the modifier. When a type-0 modifier is specified, the new value is the con-

stant from the modifier. When a type-I modifier is specified, the new value

is a function of the old value. When a type-II modifier is specified, the

new value is a function of the value of some other attribute in the record.

If the attribute being updated is a directory attribute, the updated re-

cord may change cluster. This occurs when the updated value does not corres-

pond to the same descriptors as the value before update. In this case, the

set of descriptors which can be derived from the record is not the same as

the set of descriptors which defines the current cluster. If the updated re-

cord changes cluster, then the original record is marked for deletion and the

updated record is sent to Request Composer in the Controller. Request Co-

r- er will generate an insert request for the updated record. If the updated

record does not change cluster, then it is simply rewritten in the same clus-

ter.

The algorithm is as follows:

Step 1: Reserve a result buffer.

Step 2: For each address in the set of track addresses furnished by

Directory Management, fetch the track from the disk into the

track buffer in the main memory.

Step 3: Examine the records in the track buffer one-by-one. If a re-

cord is marked for deletion, disregard it. If a record does

not satisfy the query of the request, disregard it. If a re-

cord satisfies the query of the request, compute the new

value according to the modifier and update the record in the

-

PAGE 53

track buffer. Check the updated record to determine whether

it changes cluster. If it does, then the updated record is

added to the result buffer and marked for deletion from the

track buffer.

Step 4: After all of the records in the track buffer have been exam-

ined, store the track buffer back to the disk.

Step 5: Repeat Step 2 through Step 4 until the set of track addresses

is exhausted.

Step 6: Flush the result buffer and send the results to Request Com-

poser in the controller.

4.1.6 The Delete Processing Subfunction

The delete request has the form:

DELETE Query

The purpose of the Delete Processing subfunction is to delete all the records

satisfying the query. Records are not physically deleted from the database.

They are instead marked for deletion. Records will be physically deleted

only when the database is reorganized.

The algorithm is as follows:

Step 1: For each address in the set of track addresses furnished by

Directory Management, fetch the track from the disk into the

track buffer in the main memory.

Step 2: Examine the records in the track buffer one-by-one. If a re-

cord is marked for deletion, disregard it. If a record does

not satisfy the query of the request, disregard it. If a re-

cord satisfies the query of the request, set a deletion flag

in the record.

Step 3: Repeat Step 1 and Step 2 until the set of track addresses is

exhausted.

Step 4: Store the track buffer on the disk.

III I I .1 .. .I

PAGE 54

4.2 Concurrency Control

In the previous sections, all consideration of the concurrent execution

of requests has been omitted. However as was mentioned in Chapter 1, the

backends must allow concurrent execution of requests in order to assure effi-

cient processing of the requests. This section will first present a brief

review of the concurrency control mechanism which was described in detail in

[Hsia8lb]. Then it will provide more details concerning the implementation.

Concurrency control is a mechanism by which we will insure the consis-

tency of the database while allowing concurrent execution of multiple re-

quests. To insure the consistency of the data, locks are utilized. These

locks are administered at the cluster level (i.e., individual clusters are

locked). There are five phases of execution of a request in the presence of

access control and concurrency control. First, directory management deter-

mines the clusters needed by the request. Second, cluster access control de-

termines the authorized clusters. Third, concurrency control determines when

all clusters needed by the request are available. Fourth, address generation

determines the record addresses. Finally, record processing actually exe-

cutes the request.

4.2.1 Two Types of Consistency

The MDBS Concurrency Control mechanism differs from others in the types

of locks as well as in their utilization. The mechanism distinguishes the

four types of requests (Update, Retrieve, Insert, and Delete) and utilizes a

different lock mode for each type.

There are two types of consistencies which must be assured. The first

type of consistency is called inter-consistency. One example of the type of

problem we are concerned with is two concurrent updates of a record, which

might result in the loss of one of the updates. This problem must be consi-

dered in both single and multiple backend systems. To preserve

inter-consistency, non-concurrent execution must be assured among requests

which may have different results when executed simultaneously. Requests

which may execute concurrently are called compatibl requests. The compati-

bility of two requests depends on the mode of access, e.g., two retrieve re-

quests are compatible whereas two update requests are not. When considering

PAGE 55

a new request, if the mode of the new request is not compatible with that of

one of the earlier requests which is executing, then the execution of the new

request must be delayed. Thus the MDBS concurrency mechanism locks clusters

so that only compatible requests can be using a cluster at the same time.

As just described, requests are executed at the backends in the order

they are received from the controller. Sometimes for performance reasons,

however, it may be desirable to permute the order of execution of two re-

quests that are not compatible. For example, suppose a sequence of three re-

quests R1, R2 and R3 are received and R1 requires cluster Cl, R2 requires

clusters Cl and C2, while 13 requires cluster C2. In a single backend sys-

tem, it would be possible to permute the execution of requests R2 and R3, al-

loving R3 to execute concurrently with 3I since RI and R3 require different

clusters. In order to permute the order of execution of requests in a

multi-backend system, however, a mechanism must be found to assure that all

backends execute the requests in the same order. Otherwise inconsistent re-

sults can again occur. Thus in a multi-backend system it is also necessary

to assure intra-consistencl, i.e., requests that are not compatible must exe-

cute in the same order at all backends.

A general mechanism to allow the permutation of requests that are not

compatible would be complex because it would require comunication among all

the backends. However a simple mechanism can be found that will handle the

special case involving an insert request. The actual insertion of a new re-

cord is performed at only one backend. It is not distributed across all the

backends. Therefore, if the backends are allowed to permute a non-insert re-

quest and an insert request, then the effective order of execution of the re-

quests at all the backends is the order used by the backend which actually

performs the insertion. In general, two requests that are not compatible are

called Permutable if they do not have to be executed in the same order at all

the backends. Thus we see that an insert request and a non-insert request

are permutable and we can assure intra-consistency if we permute the execu-

tion order only of permutable requests.

The compatibility and permutability of requests can be sumnarized as

follows:

I
PAGE 56

Delete Insert Update Retrieve

Delete C P N N

Insert P C P P

Update N P N N

Retrieve N P N C

C = Compatible
P - Permutable
N = Not permutable and not compatible

This table shows that two delete requests, or two insert requests or two

retrieve requests are compatible because they can be executed concurrently

without the possibility of inconsistency developing. It also shows that an

insert request can be permuted with a non-insert request, i.e., a delete, an

update or a retrieve. As was explained above, this permutability of an in-

sert request with a non-insert request is due to the fact that the actual in-

sert occurs at only one backend. Only the delete, update or retrieve is ac-

tually performed at all the backends. Thus the effect is the same as it

would have been if all the backends executed the requests in the order used

by the backend performing the insert.

The concurrency control mechanism described in [Rsia8lb] assures that

requests which are not permutable or compatible are executed, without over-

lap, in the order received by the controller. Permutable requests can,

however, be executed in any order so long as they do not overlap at the same

backend. So as to keep track of all the requests, each backend maintains a

queue of requests for each cluster, in the order in which the controller re-

ceived the requests. Thus no later request can execute before an earlier re-

quest that is not permutable has been executed. In addition no permutable

requests can execute concurrently, although the order of execution can be

modified. On the other hand compatible requests can execute together.

PAGE 57

4.2.2 Two Categories of Locks

Unfortunately, allowing the permutation of requests means that a new

problem may now occur, the problem of starvation. It may be possible to per-

mute one request indefinitely. Thus that request will never be allowed to

execute. In order to prevent starvation, we introduce two categories of

locks: "to-be-used" and "being-used". As soon as a request reaches a back-

end, it locks the clusters it needs in the "to-be-used" category. Before it

can execute, it must convert the locks to the "being-used" category. Only

requests which are locking a cluster in the "to-be-used" category are allowed

to be permuted. Thus starvation can be prevented. Details of how this

conversion of a lock from "to-be-used" to "being-used" and how this mechanism

allows the -rmutation of requests while preventing starvation are discussed

below. First however we must relate transactions to concurrency control.

4.2.3 The Notion of Transaction

A user may wish to treat a set of requests as a transaction. Such a set

of requests is known by the user to preserve the consistency of the database

if executed alone on a database system running on a single computer. Users

may want execution of a transaction to begin before all the requests in the

transaction have been provided to MDBS. In this case, we call the transac-

tion incompletely-specified. Unfortunately, because all clusters required by

the incompletely-specified transaction cannot be determined before execution

of the transaction is to begin, there is no algorithm which allows the use of

incompletely-specified transactions without sometimes having to backup one of

two transactions which have been executing concurrently. Thus in MDBS, we

have chosen to restrict transactions to those that are pre-specified, i.e.,

all the requests in a transaction must be submitted to NDBS at the same time

and before execution of any of the requests in the transaction begins. Then

MDBS must convert all locks to the "being-used" category before execution of

the transaction can begin. Locks can then be released as requests in the

transaction finish execution.

In the previous section, when we discussed compatible and permutable re-

quests, we assumed the requests were not part of a transaction. We must now

PAGE 58

reexamine these concepts in the context of transactions. Since two compati-

ble requests have no affect on each other, we can still allow their concur-

rent execution even when one is part of a transaction. On the other hand,

the order of execution of two permutable requests does affect the result.

Thus the whole transaction should be permuted, rather than one of its re-

quests. Because of the complexity of permuting a whole transaction, we have

chosen to permute only requests that are not part of a transaction.

4.2.4 Concurrency Control Using a Message-Oriented Approach

The concurrency control mechanism was described in [Hsia8lb] using a

procedure-oriented approach. Thus there was to be a lock table shared

by all users. In addition, transactions were deactivated when a needed clus-

ter was locked by other requests and were activated when the needed cluster

became available.

This basic mechanism must now be transformed to reflect a

message-oriented approach. In this approach, as described earlier, there is

a concurrency control Process. This process receives messages from the di-

rectory management process (a request to be executed) and from the record

processing process (a report that a re quest has completed execution). When

the concurrency control process determines that a request is ready for execu--

tion it forwards the request to record processing. The "shared lock-table"

evident in the procedure-oriented approach now appears as a table internal to

the concurrency control process. This table, called the

cluster-to-traffic-unit table(CTUT), is described in Section (B) below. The

concept of "deactivating" a transaction is replaced by having concurrency

control hold the request in a queue until it can be forwarded to record pro-

cessing for execution. The algorithms for concurrency control are described

in Section (D) below.

(A) The Process Structure in the Backends

Once a message-oriented approach has been selected, it is necessary to

break up the functions of each backend into processes. The most obvious

choice would be to have one process per function, i.e., five processes cor-

PAGE 59

responding to descriptor search, cluster search, concurrency control, address

generation and record processing, respectively. (The sixth function, cluster

access control is omitted because it is not included in our initial implemen-

tation.) However, since there is added overhead for each interprocess mes-

sage, it is desirable to reduce the number of processes. One easy way to do

this is to combine descriptor search and cluster search into a single direc-

tory management process. Address generation must take place after concurren-

cy control, since records may be added to a cluster while a request is wait-

ing to lock the cluster. Thus, address generation cannot be included in a

directory management process. However, it could be combined with either con-

currency control or record processing. For the purposes of discussing con-

currency control, it is easiest to assume that address generation is not part

of concurrency control. Thus the function of concurrency control is to sche-

dule the execution of requests based on the clusters that are required as de-

termined by directory management.

(B) Cluster-To-Traffic-Unit Table (CTUT)

As was described earlier, information about the locks held on each clus-

ter is stored in the CTUT. This table contains a queue for each cluster.

Each cluster queue contains an entry for each of the requests requiring that

cluster. Each entry contains an identifier for the request (the traffic-unit

and the request-number), the MODE of access required (delete, insert,

retrieve or update), and the CATEGORY of lock held ("to-be-used" or

"being-used"). A sample CTUT with four clusters is shown in Figure 14. This

table contains entries for five single requests and one transaction consist-

ing of two requests.

(C) Traffic-Unit-To-Cluster Table (TUCT)

In a procedure-oriented implementation there is a process associated

with each user and this process keeps track of how many locks are still to be

acquired before a transaction can be executed. However, in a

message-oriented implementation, of course, there is no such process for a

user. Thus this information must be maintained in a different way. The con-

currency control process stores this information in a traffic-unit-to-cluster

PAGE 60

Clusters ri Traffic-Units[I
--- -- -- --------------------- TUI and TU2 are compatible
11 TUI I TU2 I TU3 I and are executing. The lock for TU3

Cl II I I I U I has been converted to "being-used",
II BU BU B EU I but since V and I are not
--------- - ------- --------------- compatible, TU3 must wait.
IITU4 ITU3 1

C2 I I U TU3 and TU4 have been
I TBU I BU I permuted.

----------4 -- ---- 4----------- ----------------
I TU4 I TU5,Rl TU5,Rl would be permutable

C3 H I I D with TU4, except that it
1I BU I BU is part of a transaction.

- -----------4-- ------- 4-----------------------------

II TU5,R2 I TU6
C4 H U I

IITBU IBU
- ----- 4--------4----------+---------------------------

C Cluster TU - Traffic-Unit
R - Request within traffic-unit

MODE of Request CATEGORY of Request
D - Delete BU = Being-Used
I - Insert TBU - To-Be-Used
R - Retrieve
V = Update

Figure 14. A Sample of Cluster-To-Traffic-Unit Table (CTUT)

PAGE 61

table (TUCT), which it can then use to determine the status of any

traffic-unit. This table is essentially an inverse of the CTUT. It is a

reference, by traffic-unit, of which clusters are required for each request

of the traffic-unit. In addition, this table keeps track of how many re-

quests of the transaction have not yet been sent to record processing for ex-

ecution. Figure 15 shows the TUCT corresponding to the CTUT shown in Fig-

ure 14.

(D) The Processing of Concurrency Control Information

The concurrency control process receives messages from directory manage-

ment and from record processing. A message from directory management con-

sists of a new request to be executed and a list of clusters required by that

request. A message from record processing means that execution of a request

has been completed. Concurrency control must send messages to record pro-

cessing notifying it to begin execution of a request.

In order to handle these messages, concurrency control must perform

three basic functions. When a new traffic-unit is received from directory

management, an initialization must be performed locking all the required

clusters in the "to-be-used" category. When concurrency control receives a

message from record processing that execution of a request has been complet-

ed, then concurrency control must remove that request from the TUCT (and

CTUT) and determine the clusters that were locked by that request. Finally,

whenever a new request is received or an old request has completed execution,

concurrency control must try to convert as many locks in the clusters re-

quired by that request to the "being-used" category. When all locks required

by a request have been converted to "being-used", the process must notify re-

cord processing to begin execution of the request.

..................

PAGE 62

Traffic- 11 Requests
Units I

TUlI Cl I executing -
(one request) II BU I

-------- +---- ------------ -- compatible
TU2 H1 Cl I

(one request) J BU I-executing <---

TU3 I Cl C2 i' waiting for C1 <-+
(one request) 11 BU TBU I I

----------- + permutable

TU4I 1C2 C3 I
(one request) 11 BU BU I executing <.. .+

+-+...----+----++------

TU5 1H C3 I C4 I waiting for C3
(two requests)IH BU I TBU I

-+-----------..+- ------

TU6 I C4 I waiting for C4
(one request) 11 BU I
-. .------ -------

TU - Traffic-Unit
C = Cluster

BU = Being-Used
TBU = To-Be-Used

* Note that a transaction must acquire
all locks before it can proceed. It
can, however, release the locks as
each request finishes execution.

Figure 15. The Traffic-Unit-To-Cluster Table (TUCT) Corresponding to the
CTUT in Figure 14

..... __ , /1

PAGE 63

5.0 TESTING 14DBS

In order to test MDBS two types of sample information must be made

available. They are sample databases and sample requests. Therefore, a test

o jMM consists of loading a sample database and then executing one or more

sample requests on the database.

5.1 The Need for the Generation of Test Databases and Lists o User

Reauests

In the first report [Kerr82], it was argued that a program to generate

test databases would facilitate the testing process. A program, the Test

File Generation Package, was developed for this purpose. It was also des-

cribed in the first report.

A second program, the Test Reauest Generation and Execution Package, is

being developed. This program is to assist in the generation of lists of

sample requests to be executed and to facilitate the execution of the re-

quests in a test session. In the following sections, we describe this Pack-

age.

5.2 The Generation of User Reguests Lists

Several methods of generating lists of requests are possible. In addi-

tion, once the requests have been generated, several schemes for executing

the requests are also possible.

5.2.1 User-Generated vs. Program-Generated Requests

As with the test files, a user may directly generate each request to be

executed or a ptogram may generate random requests based on some criteria

chosen by the user. Since we anticipate our initial tests will use only a

small number of requests and since we want to choose our requests to test

certain features of MDBS, we have chosen to implement a package which first

assists the user in the generation of short lists of requests and then facil-

PAGE 64

itates the execution of lists of requests intended for certain features of

HDBS. In other words, ye are developing a package for user-generated test

requests. Program-generated lists of requests are needed for performance

evaluation experiments but are not needed for testing the features of]MDBS.

Such a package will be developed at a later date.

5.2.2 A Simple Test Package for a Single User

The first package developed is intended for testing Version I of MDBS,

i.e., it assumes a single user wants to execute one request at a time. This

package first assists the user in the generation of lists of requests. Once

a list of requests has been generated it is saved in a file so that it can be

executed at a later time. Thus the user does not have to type in sample re-

quests repeatedly.

The test package works as follows. A user decides to have a test

session consisting of several test subsessions. During each subsession the

user can do one of the following:

(1) Execute a list of requests that was previously stored in a file.

(2) Generate a list of requests to be stored in a file for later use.

(3) Retrieve a list of requests that were previously stored in a file and

then select requests from that list for execution. This selection

can be done in any order. The user will also be able to enter a new

request to be executed.

(4) Kodify an existing list of requests that was previously stored in a

file.

The user can continue with as many subsessions as desired. The user is

also given a choice of two ways to examine the responses from HDBS. They may

be displayed immediately at the user terminal and/or they may be saved in a

file for later examination. The design of this package is given in

Appendix D.

, PAGE 65

5.2.3 A Test Package for the Simulation of Multiple
Concurrent Users

MDIS is, of course, designed to allow concurrent execution of requests

by multiple users. Thus all versions of MDBS, except MDBS-I, must be tested

with multiple concurrent users. In order to perform these tests there must

be a way to simulate multiple users.

The simplest technique is to execute multiple copies of the package des-

cribed in the previous section. Thus, if we had n copies of the package, we

could simultaneously execute n different lists of requests - one for each

concurrent user. Although easy to implement, there are two problems with

this technique. First, setting up the n copies will be inconvenient, since

we will either need n people sitting at different terminals or someone will

have to run among a group of terminals. Second, replicating a test will be

difficult. MDBS merges the requests as they are received from different

users. The requests are then executed in this merged order, subject to al-

terations due to concurrency control restrictions. Even if in two tests the

users all submit the same requests in the same order, there is no guarantee

that 4DBS will receive the combined requests in the same order. Thus the

merged lists will be different and the two tests will not be identical.

Although it will be possible to run the same sets of requests, it will be im-

possible to assure that MDBS will receive the requests in the same order.

Thus MDBS will not be asked to perform exactly the same sequence of requests.

An alternative to running multiple copies of a package which can only

simulate a single user is to run a new package that actually simulates multi-

ple users. Such a package may be a modification of the single-user package.

The main modification would be to associate each request with a particular

user. Then the requests could be executed in turn thus simulating a

multi-user system. We plan to use this approach for testing the later ver-

sions of MDBS.

5.2.4 A Test Package for the Generation of Random Requests

Like the Test File Generation Package, which generates test files with

specified distributions of data values, this package generates certain types

of requests for performance evaluation. Lists of requests vary in the mix-

ture of the different request types they contain. Thus a user should be able

PAGE 66

to specify the percentage of RETRIEVE, INSERT, DELETE and UPDATE requests to
be generated. In addition, each non-insert request has a query part. Some
queries may be simple, say vith one or two predicates. Others may be more

complex, say with 10-15 predicates. Thus the user should also be able to

specify the complexity of the requests being generated.

MDBS is likely to be more effective handling some forms of requests than
others. Thus, it is desirable to perform experiments vith different distri-
butions of the request types. A package for the generation of random re-
quests is to be developed for performance evaluation studies.

PAGE 67

6.0 OUR SOFTWARE ENGINEERING EXPERIENCE

Well-known software engineering techniques have been applied to the de-

velopment of application programs and the writing of compilers and operating

systems. They have not, however, been widely applied to database system im-

plementations. Our goal is not limited to the production of a prototype

NDBS, but is aimed toward application of software engineering techniques to

the development of the system. In the application, we are trying to identify

the adequacy and applicability of the software engineering techniques used.

We also attempt to modify the existing software engineering methodologies and

propose new methodologies to tailor them for effective software engineering

of database systems. In [Kerr82], we described the initial techniques that

we were going to use. In this chapter, we describe some of the techniques

that have been most effective. We also describe the new techniques that we

have added to our initial techniques.

We conclude this report by giving the current status of the implementa-

tion.

6.1 The Effectiveness 2L the Techniques Used

Different software engineering techniques have been used in the develop-

ment of MDBS. They include a modified chief-programmer team organization,

uniform documentation standards, a formal system specification language, use

of structured walkthroughs, incremental development, top-down design strategy

combined with the use of data and service abstractions, structured coding and

a testing approach. Our finding is that most of the techniques may be used

in prototyping the database system, i.e., MDBS. In this section, we describe

the techniques that have been most effective.

6.1.1 The Use of Structured Walkthroughs

A structured w kthroush is a formal review of the software development

effort at a given stage in its development cycle. The work is reviewed by a

walkthrough committee, with the purpose of finding any errors that may be

PAGE 68

present. The purpose of a valkthrough is not to solve problems, only to

identify them; neither is a valkthrough a management tool to evaluate any

employee's performance.

We have been using this technique at both the design stage and the cod-

ing stage. All detailed program specifications and source codes are reviewed

by valkthrough committees. The status of a task can be determined by review-

ing the valkthrough reports for that task. Figure 16 shows a sample walk-

through report. A good reference describing the structured valkthrough tech-

nique is [Your79a].

The use of structured valkthroughs has helped us to identify most of the

design and program code problems. Furthermore, most of the suggestions made

by the reviewers in the valkthroughs have been very useful to the presenters.

A presenter, of course, investigates the comments and suggestions made about

his work, instead of simply modifying his work to incorporate the sugges-

tions.

6.1.2 The Use of a Formal Systems Specification Language (SSL)

Our original design methodology was a systems specification language

(SSL) modeled on the process design language (PDL) described in [Ling79].

The original SSL is described in [Kerr82]. The SSL which we now use is based

on our original SSL and it is intended to describe systems of any size. The

current SSL is characterized by a number of constructs for the expression of

the different levels of a system: system, subsystem, module and procedure.

A system is at the highest level of the hierarchy. HDBS, for example, is a

system.

At the second hi&Sst level of the hierarchy, we have the level of sub-

system. A Jugy- _ is a separate component of a system. In other words,

each system may consist of several subsystems. The NDBS controller, for ex-

ample, is a subsystem, as is each MDBS backend. The system, consisting of

the controller and the backends, is the IDB8.

Below the level of subsystem, we have the level of module. A odule is

PAGE 69

viut"1:1a non coo~ -

a w =: A:V~~r=Ot o" a ia

L AA C*M.'eMW1 ft r6:QS- 42T J! Pil It ~a~ SIC213:12

-A 0

W77;W

-- ~ ~ ~ ~ ~ ~ ~- --. -L~ -----I! ~ ~ ~ (a'! !~~

3. ---- -- e~ cnri*ic~ y~c stcon)

-- -p -- -- - -- -- - -- --

Fiue16. A Samplet Wakthrau;"h1 ffeporj

PAGE 70

intended for the implementation of a data or service abstraction. It con-

sists of the procedures and data structures implementing the abstraction. A

Drocedure is at the lowest level of the hierarchy. It corresponds to the

usual notion of a subroutine. Procedures are invoked to perform some work on

some input data and produce some output. However, they are not allowed to

retain data between invocations. A formal outer syntax and an informal inner

syntax are used in a procedure. The outer-syntax allows only the following

three types of constructs: sequence, decision and iteration. Below is an

example of the if-then-else decision construct.

if expression

then statement sequence

_q9 statement sequence

endif

The underlined words represent the formal outer syntax. The other words

represent the informal inner syntax; the only requirement for this inner

syntax is that it must be understood by all project members. Figure 17 shows

a typical SSL procedure specification.

The use of a formal system specification language has been very effec-

tive. More specifically, by using the SSL:

(1) Precise and unambiguous communication among the project members is

achieved.

(2) Complete and accurate documentations are produced.

(3) Dependence on individuals is reduced.

(4) Project management is easier.

One useful concept that we have not employed is multi-level data ab-

stractions (having higher level data abstractions which use lower level data

abstractions which in turn use lower level data abstractions, and so on). We

have used data abstractions only at the lower levels. The reason for this is

probably that we are not used to the concept of multi-level data abstrac-

tions. This concept, however, leads to better and well-structured design.

Thus, it should be employed.

PAGE 71

which requires 4 numbersTh
fo ach programe statement heoa stments for prdgames

I'ame

FOURTH LEVEL SPECIFICATION FOR DATABASE LOAD
VERSION 2P September 16P 1981

4.10.21.1 zaoc LIST-TYF'E-C-ATTR-NAMES /2 TYPECLST (DBL1113) 2

(input: tfe-C-attr-namesy
atpoiriter)i

/2 List all the attribute names over which twpe-C descriptors 2
/x are to be defined, In,.lt is a list for attribute nacies /

/S Over which tv~e-C attribujtes are to be definedi arid a X/
/S pointer to the AT. 2

4.10.21.2 scalar indext /* Index to list of attribute names.,2
a tt r .n amte
duplicatey /* Indicator. - TRUE or FALSE. 2
dditpointerr/i Poiniter irto DDLT returned from ATMIt/

/Z FIND function. I
descr...tpe ./I A, 3, CP or NOTFOUND. Z/

4.10.21.3 index =1; /2 Null indicates end of list. 2
4,10.21.4 tvpe-C..attr..naes~inde;2] := niun,
4.10.21.5 libile %are tvpe-C descriptors da underl.ined. They are-the

4,10.21.7 set attr-name from terminal; SSL constructs.
4.10.21.8 :mo~ AT MFIND(attr-riate,

p ointer to descr-tvpe);
4,10.21.9 it a t'jpe-A or tyspe-3 descriptor is alreadv defined

over this attribute name
/2 descr-tvpe riot aNOTFOUND t/

4,10.21.10 te
4,10.21.11 displav error &essase; Inner syntax elements

4,1 ,21.!2 elsearno del4d

4.10s21,.5 eeztoza SERHTP-CAT-AE
(tpe-C~attr~names

Iattr-nape, A program constant
duplicate);________

4.10.21.16' if duplicate is FALSEL
4,10.21.17 theo

4,10.21.iq tje-C.attP~namesindex3 :z ttr-naae; Aoon
4s10.2!.;0 index := tirdex ;4, 10.21.2: pe-Cattr.nes'6index1: null; vari.able-

4.10.21.124 eod-wbile;
4.10.21-25 ead...ac; his number reans that this is the 25-th

Droqram statement in this procedure. The
procedure number is 4.10.2: which means that it
wscleatro mstatemnt 21 in t he1 eve -3

nrceur nmee 4.0 Tht pedrel wa in toc urn, cale
at eroera tttnn in ot the p. - oroc edure. "umed4

roeueiurwas called b rogram statement 2! inth el-

the ain~'rcedure.

r4izure 17. A SSL Specification of j rrogram Procedure

PAGE 72

6.1.3 A Top-Down Design Strategy and the Use of Data and Service

Abstractions

A top-down design strategy is a natural choice for MDBS. The design and

analysis study in [Hsia8la] and [HsiaaBbi clearly describes the top level of

design. It also suggests the possibility of functional decomposition, i.e.,

the entire system can be broken into discrete functional units. For example,

the execution phases of a retrieval request can be broken down into directory

management and record processing, as depicted in Figure 2. Directory manage-

ment, an example of a functional unit, includes the descriptor search, clus-

ter search, and address generation phases of request execution.

At a lower level, one concept, data and service abstractions, is used

which originated in the bottom-up design approach. Since MDBS is being de-

veloped as a prototype system and is aimed for research into performance eva-

luation, we anticipate that data structures and system services will be rou-

tinely modified in attempts to measure the effect of different data struc-

tures on system performance. The abstractions allow us to separate the basic

system functions from the data structures and from the implementation of the

services, minimizing the effect on the system when data structures or imple-

mentation services are modified.

We did not, unintentionally, follow the top-down design strategy in the

development of the MDBS controller. Instead, the functional components of

the controller such as Request Composer and Reply Monitor were first deter-

mined. Then, the categories of functions such as Request Preparation and

Post Processing were determined based on the functional components. A

top-down design of the controller would have first identified the categories

of functions such as Request Preparation, Insert Information Generation and

Post Processing. It would have then decomposed them into smaller components.

6.2 Tryina New Software Engineering Techniques

We have added new software engineering techniques to our initial techni-

ques. In this section, we describe these new techniques.

PAGE 73

6.2.1 The Use of Jackson Charts

Our original designs were developed using only SSL. More recently, we

have begun using a technique, Jackson chart (Jack751, to represent the pro-

gram structures. Three constructs are used in a chart:

(1) Sequence - Figure 18a shows a sample sequence. In this example, the

sequence A consists of B followed by C followed by D.

(2) Iteration - Figure 18b shows a sample iteration. In this example,

the iteration A consists of multiple occurrences of B.

(3) Selection - Figure 18c shows a sample selection. In this example,

the selection A consists of one of B, C or D.

A sample program structure and its corresponding SSL are shown in Figures 19

and 20, respectively.

Jackson charts contain fewer details than the SSL specifications, and

provide a two-dimensional representation of program structure. These charts,

along with the fSL specification, are used to document the detailed design.

6.2.2 Standards for Module Decomposition

As explained in the previous chapters, the entire MDBS *ystem has been

designed as a set of discrete functional units. We propose to apply the same

idea of functional decomposition at the level of subsystem design. We need

some way to evaluate the modularity of our decomposition. This need became

apparent when we began designing the top-level scheme for HDBS subsystems.

It is necessary that we develop a unified view of the overall function of the

subsystems of the controller and the backends before proceeding to design the

abstractions and procedures. We have added to our collection of software en-

gineering strategies two measures of modularity, or functional decomposition.

The first of these measures is strength of module cohesion [Your79b].

Cohesion is defined as the relatedness of processing elements within a single

component of a system, i.e., a subsystem, a module or a procedure. The de-

gree of relatedness determines the leel of cohesion. Several levels of

cohesion, ranked from least to most desirable, are recognized. A component

is said to be functionally cohesive, most desirable level of cohesion, i"

PAGE 74

A A

B ED W
(a) Sequence (b) Iteration

A

B 0 C 0 D0

(c) Selection

Figure 18. The Constructs Used in a Jackson Chart

PAGE 75

Delete
request.
processing

4 ------- 4

Process data I1
track by track +

Fetch one track, Delete(mark) I Store TRACK BUIFER I
to TRACI BUFFER I records back to disT

Select records J
in TRACK BUFFER
one by one

Check if the record +
has been deleted

I I

I Deleted fol I Not deleted lol
4" . +----4------4...+ +
Do noting ICheck whether the 1Do no In;+ record satisfies -

the query

-.. 4.-----Satisfied 0 hn nt

processing +- I-
'-------.... 4.-- ---- ----

4--------------

Mark the I Do nothing
record in +--------
TRACK BUFFER

Figure 19. A Sample Program Structure

PAGE 76

10.1 roc DELETE.PROCESSING(i!put: QUERY,ADDRESSES);

/* This procedure is to be used for processing of DELETE requests. */

10.2 list QUERY: string;

10.3 set ADDRESSES: integer;

10.4 array TRACKBUFFER: word;

10.5 scalar index&,indexB: integer;
/*These are pointers for ADDRESSES and TRACK BUFFER respectively */

10.6 scalar satisfied: logical;

/* Process data track by track

10.7 for each address ADDRESSES(indexA) in ADDRESSES da

/* Fetch one track into TRACKBUFFER.

10.8 perform FETCHTO_TRACKBUFFER(indexA,TRACKBUFFER);

/* Select records in TRACKBUFFER one by one. */
10.9 for each record TRACK..BUFFER(indexB) in TRACK BUFFER -do

10.10 if the record is not marked for deletion

10.11 then begin

/* Check vhether the record satisfies the QUERY. */

10.12 perrorm C'ECKQUERY(QUERYTRACKBUFFERindexB,satisfied);

10.13 if satisfied-'true'

then

/* Mark the retrieved record in TRACK BUFFER(indexB).*/

10.14 Rerform DELETE(TRACK_BUFFERindexB);

10.15 end if

10.16 end begin

10.17 end if

10.18 end for /* indexB */

/* Store TRACKBUFFER back to disk. */
10.19 perform STORETRACK.BUFFER(indexA,TRACKBUFFER);

10.20 end for /* indexA */

10.21 end proc

Figure 20. The SSL Corresponding to the Sample Program Structure in Figure 8

PAGE 77

"every element of processing is an integral part of, and is essential to, the

performance of a single function". An rd hoc measurement is that the des-

cription for a functionally cohesive component should consist of one impera-

tive sentence containing one transitive verb and one non-plural object. We

have applied this ad hoc measurement to our current design work. The de-

signer is required to write a functional description of each program compo-

nent, say an abstraction, of the design. Each description begins with a sin-

gle imperative sentence which concisely describes the function of that compo-

nent. For example, the following sentence describes the function of a proce-

dure of the MDBS controller, the Aggregate Post Operation

Aggregate Post Operation performs the final aggregation
operation on the partial aggregate results returned
from the backends.

The second measure of modularity is the degree of interconnections

between components. CouplinR is a measure of the strenAth of interconnection

between components. Several categories of coupling, ranked from lowest (best

case) to tightest (worse case), are recognized. Two components are said to

have no direct coupling, lowest coupling (best case), if each can function

without knowledge of the other. We now give an example to show how we em-

ployed these standards for module decomposition. The original design for the

controller, Figure 21, had a function called Insert/Update Information Gener-

ator. This function was intended to perform the following operations:

(1) to select a backend for record insertion when executing an insert re-

quest

(2) to generate new descriptor 4ds

(3) to generate new cluster ids.

In addition to performing the above operations by itself, Insert/Update In-

formation Generator was intended to perform the following operations together

with Request Composer:

(1) to initiate the actions required for the insertion of the records

that change cluster as a result of executing an update request

(2) to generate update requests with type-O modifier for update requests

with type-Ill or type-IV modifier.

This function, Insert/Update Information Generator, is not functionally cohe-

sive and it is highly coupled with Request Composer. Thus, we changed the

original design of the controller.

PAGE 78

REPLYPARSE

MONITOR

AGGREGATE REQUEST
POST INSERT/ COMPOSER

OPERATIN UPDATE

INFORMATION
GENERATOR

Figure 21. The Origin~al Design for MBS Controller

PAGE 79

6.3 Current Status L hM implementation

The implementation of MDBS is undervay. The detailed design of the con-

troller is finished and coding has begun. The parser has been coded and

tested. The first version of directory management is complete. The design

for the second version has begun. The detailed design of record processing

is finished and coding has begun. The design of concurrency control has

begun. In addition to MDBS itself, we have completed several required auxi-

liary programs such as a database load utility. We expect to begin testing

MDBS-I soon. We expect to finish MDBS-II, III and IV by the end of this

year.

4

PAGE 80

REFRENCES

[Auer80 Auer, H., "RDBM - A Relational Database Machine", Technical Report

No. 8005, University of Braunschweig, June, 1980.

[Hsia70] Hsiao, D.K. and Harary, F.A., "A Formal System for Information Re-

trieval from Files," Communications oL the ACM, Vol. 13, No. 2, February

1970; Corrigenda, Coimunications of thA CM, 13, 3, March 1970.

[Esia~lal Hsiao, D.K. and Menon, N.J., "Design and Analysis of a

Multi-Backend Database System for Performance Improvement, Functionality Ex-

pansion and Capacity Growth (Part I)", Technical Report, OSU-CISRC-TR-81-7,

The Ohio State University, Columbus, Ohio, July 1981.

[Hsia8lb] Hsiao, D.K. and Menon, M.J., "Design and Analysis of a

Multi-Backend Database System for performance Improvement, Functionality Ex-

pansion and Capacity Growth (Part II)", Technical Report, OSU-CISRC-TR-81-8,

The Ohio State University, Columbus, Ohio, August 1981.

[Jack75] Jackson, M.A., Principles U Program Desisn, Academic Press, 1975.

[John79] Johnson, Steven C., "Yacc: Yet Another Compiler-Compiler", UNIX

TIME-SHARING SYSTEM: UNIX PROGRAMER'S MANUAL, Bell Telephone Laboratories,

Incorporated, Murray Hill, N.J., 1979.

[Kerr82] Kerr, D.S., et al., "The Implementation of a Multi-Backend Database

Sysyem (MDBS): Part I - Software Engineering Strategies and Efforts Towards

a Prototype MDBS", Technical Report, OSU-CISRC-TR-82-1, The Ohio State Un-

iversity, Columbus, Ohio, January 1982.

[Laue79] Lauer, H. and Needham, R., "On the Duality of Operating System

Structures," in Proc. Second International Symposi M Operating Slstems,

IRIA, October 1978, reprinted in Operating Systems Review, Vol. 13, No. 2,

April 1979, pp. 3-19.

[Lesk79J Leak, M.E. and E. Schmidt, "lex - A Lexical Analyzer Generator",

PAGE 81

UNIX TIESURN SYS= PROR 1'S" MMJ1IJL. Bell Telephone Laborato-

ries, Incorporated, Murray Hill, N.J., 1979.

[Ling79I Linger, R.C., Mille, H.D., and Witt, 1.1., Structured Praiia

Zheogy A4A Practice, Addison-Wesley, 1979.

[Ston~i) Stonebraker, N., "Operating System Support for Database Management,"

Comunicatons gLI~ CM Vol. 24, No. 7, July 1981, pp. 412-418.

(Your79aJ Yourdon, I., Structured Walkthroughs (2nd Edition), Prentice-Hall,

1979.

(Yourl9bI Yourdon, E. and Constantine, L.L., Structured Desigtn:

FundaMntals gL A Discipline .2L Computer Pr.2gtj., &_n4 Systems DesiAn,

Prentice-Hall, 1979.

PAGE 82

APPENDIX A

HOW TO READ AND FOLLOW THE PROGRAM SPECIFICATIONS

In Appendices B, C and D, a large number of MDBS programs are described

and specified. These programs represent those parts of NDBS that have been

designed since the first report in this series was written.

A.1 Parts within an Appendix

Each appendix begins with an introduction which outlines the major com-

ponents of the design. For example, the design of the test request genera-

tion and execution package, presented in Appendix D, consists of two major

components: one to generate lists of requests to be executed and then to ex-

ecute those requests, the other to handle the output resulting from the exe-

cution of the requests. Accordinngly, each major component is described and

specified in a separate part of the appendix. Thus Appendix D has Part I and

Part II.

A.2 The Fort ., I Par

In each part, we provide the following documentation elements:

(1) Title of the part,

(2) Name of the design,

(3) Name of the designer,

(4) Date the design was first submitted,

(5) Dates of design modifications,

(6) Statements of the design purpose, and of the input and output re-

quirements,

PAGE 83

(7) Formal specifications of the input and output, if necessary,

(8) Procedure names used in the design,

(9) Jackson chart of the design,

(10) Data structures used in the design,

(11) Program specification of the design.

A.3 Documentation Technigues for # Part

In the previous section, we listed the various documentation elements.

They are used to describe a design. Documentation elements 1 through 5 are

written in English phrases. Document element 6 is written in prose. On the

other hand, document elements 7 through 11 can be expressed more effectively

using other means. Specifically, we use Backus-Naur form (BNF) for writing

the specifications in document element 7.

The procedure names of document element 8 are shown in a program hierar-

chy. The use of the hierarchy makes clear the calling sequences of the pro-

cedures named. A Jackson chart as described in Section 6.2.1 and depicted in

Figure 19 appears as element 9. The data structures of documentation element

10 are specified in either SSL or in the C progrming language. In documen-

tation element 11, the procedures, themselves, are specified in SSL.

Except for the programing team that writes the procedures, other teams

will usually not be interested in the internal logic of the procedures.

Consequently, they need only know the higher-level specifications of the pro-

cedures. SSL as described in Section 6.1.2 and depicted in Figure 17 is an

ideal specification language for revealing the design of the procedures from

a top-to-bottom-and-layer-to-layer way. It also works well with the hier-

archical organization of procedures.

PAGE 84

APPENDIX B

THE SSL SPECIFICATION FOR MDBS CONTROLLER

The system specification for the controller is given in this appendix.

The specification consists of three parts, one for each process (task) in the

controller.

In Part I, the Request Preparation process is specified. Insert Infor-

mation Generation process and Post Processing process are specified in Parts

II and III, respectively.

B.1 Part I - The Request Preparation Process

1* (1) Part I The Request Preparation Process */
/* (2) Design REQUEST-PREPARATION */
/* (3) Designers A. Orooji, Z.Z. Shi, P.R. Stravser */
1* (4) Date Feb. 4, 1982 */
/* (5) Modified Feb. 19, 1982
/* Apr. 12, 1982 */
/* Apr. 26, 1982 *1
/* May 13, 1982 *1
1* May 19, 1982 */
/* (6) P" rpose : */
/* This is the Request Preparation process. It consists of "1
/* the functions which must be performed before a request or a */
/* transaction can be broadcasted to the backends.% *

PAGE 85

(8) Procedure Hierarcby for REQUEST-PREPARATION

REQUEST-PREPARATION

- ---- -------------------------------. 4-------------------I I I I I I I I
PARSER REQUEST RP RP RP RP SEND BROADCAST

COMPOSER RECEIVE$ RECEIVES RECEIVES RECEIVES POST ALL
MESSAGE SENDER TRAFFIC BE PROCESSING DIRECTORY

UNIT MESSAGE MANAGEMENT

7...

PAGE 86

(9) Program Structure of REQUEST-PREPARATION (Jackson Chart)

---------------- 4

SREQUESTIoPREPARATIO

I I

-+ -- ------------+
I INITIALIZATION I I process all

--- + messages

I proces 11
message

---- ----- H --------------
S---------

scheduling I L EVE RI' Ielect based on
mesg +-1mssg -

I I' I I !
4.------------+-------------

RP hoS R. ll R bRceDdAoT

Ihc EEVS RCIE message -IIssger 4-

RECEIV$ -------- c-he4.-ECEIVE--------- AL

UNI MESSAGE MANDERMENT

-----4---------------- -------

I I

reuet al +_
reI C ot r I t

SI I I

RECEIVES 4- + check RECEIVES COMPOSER ALL
TRAFFIC +DIR BE 4 DIRECTORY
UNIT M ,GMESSAGE MANAGEMENT

---- +------------------------------------4

requests *all 4.-
correct requests

4----------4 correctSI)I 4
44. .9------------4.

send REQUEST BROADCAST SEND
SCOMPOSER POST

POS+ DIRECTORY PROIES S1IPROCESS ING MANAGEMENT +......

SSEND 1*14
IPOST +
PROCESS INGI

4---------4.

7 AD-AIug 161 0OHI0 STATE UNIV COLUMBUS COMPUTER AND INFORMATION Sc--ETC F/B 9/2

THlE IMPLEMENTATION OF A MULTI BACKEND DATABASE SYSTEM (MDBS) P--ETC(U)

JUL A2 X ME, M HIGASIIIDA, 0 K HSIAO, D S KERR NOOVZN 72 C 0973

UNCLASSIFIED NPS- 2 aZ OA8 NL2 fllllllfffff
smhmmhhhhhhl
EhhEEmmhhmhohEI
Ehhhhhhhhhhhhl

PAGE 87

(10) Data Structures

1* The data structure definitions are included in the program *
/* specifications. *1

(11) Program Specifications

1. Uk RQUEST-PREPARATION
/* TrafficUnit : *1
1* is either a request or a transaction *1
/* traffic-id : *1
/. an integer that identifies a traffic unit */
/* TrafficUnitPtr : *1

a pointer to (traffic-id,TrafficUnit) ./
/* AllCorrect : */
/* indicates whether or not all the requests in the traffic */
I* unit are syntactically correct */
/* request-id : */
1* consists of (traffic-idrequest-no) which uniquely */
/* identifies each request being processed by XDBS */
/* ParsedlequestsPtr : */
/* is one of the following two */
/* (1) a pointer to ((request-idrouting-indicator, *[
/* no-pred, parsed-request)[....]) if all the requests*/
1* in the traffic unit are syntactically correct. */

(2) a pointer to ((request-id,request,
1* error-message)[....I) if one (or more) of the */
/* requests in the traffic unit is not syntactically */
/* correct* *1
/* FormattedRequestsPtr : */

a pointer to ((request-id,routing-indicator,no-pred, */
/* sched-no,formatted-request) [s. •])
/* AggregateOperatorsaeusagePtr : */

a pointer to ((request-id,(attribute,
/* eagregate-operator)[,•),...])
/* RequestCountHessagePtr : */

a pointer to (traffic-idrequest-count)
/* request-count : *1
1* number of requests in a traffic nuit */
/* MessageType :*
1* indicates the type of a message *1
/* NessagePtr : *1
/* a pointer to a message *1

2., do initialization work;
3. while 'true' do /* do forever */
4. .L according to the task scheduling this task should

release the processor

6. release the processor and wait;7. slut A
/* get the next message for RZQUEST-PREPARATIOI */

*
4. .

PACE 66

8. oerform RP-RIECEIVK$MSSAGE;
/* get the sender name of the next message for REQUEST- /
/* PREPARATION 1

9. Perform RP-RECEIVK$SENDER(sender);
10. case sender value
11. 'host machine':

/* get the traffic unit *1
12. Perform RP-RECIVE$TRAFFIC-UNIT(TrafficUnitPtr);

/* parse all the requests in the traffic unit */
13. Perform PARSR(TrafficUnitPtr ,AllCorrect,ParseadlequestsPtr,

AggregateOperatorsNessagePtr ,RequestCountMessagePtr);
14. if AllCorrect
15. then

/* all the requests in the traffic unit are *1
/* syntactically correct *1
/* send number of requests in the traffic */
/* unit to POST-PROCESSING */

16. MessageType : =number-of-requeste-in-a-
traffic-unit message';

17. Perform SEND-POST-PROCESSING(fessageType,
RequestCountiessagePtr);

18. if there are aggregate operators
19. then

/* send the aggregate operators in the */
/* requests to POST-PROCESSING *1

20. MessageType :- 'aggregate-operators message';
21. perform SEND-POST-PROCESSING(MessageType,

AggregateOperators~essagePtr);
22. end if

/* transform the requests into the form required *1
/* for processing at the backends *1

23. MessageType :- 'PARSER message';
24. verform REQUEST-CONPOSER(MessageType,

ParsedRequestsPtr ,lormattedRequestsPtr);
/* send the requests to all the backends */

25. verform BROADCAST-ALL-DInECTORY-MAEAGIX (
FormattedlequestsPtr);

26. else
/* one (or more) of the requests in the traffic */
/* unit has errors */
/* send the requests along with error messages *1
/* to POST-PROCSSSING */

27. MessageType :- 'request-with-error message';
28. ierform SEND-POST-PROCESSING(MessageType,

ParsedRequestsPtr);
29. if

30. "a backend':
/* There is a message from a backend for REQUEST- */
/* PREPARATION when
[* - a retrieve request caused by an update
1* request is completed

- a record has changed cluster when executiag *1

PACK 89

/* an update request. *1
/* get the message sent by the backend */

31. Rerform RP-nCBI Z$*1-SSAGE(fessaePtr);
I* Generate a request. (This request is either an -1

/* insert or an update)
32. NessaseType :- 'backend message';
33. nerform EQUEST-CGPOSER(MessageType,

MssaePtr,ForattedlequestsPtr);
/* send the request to all the backends */

34. jerform BROADCAST-ALL-DIRECTORY-MANAGEHEIT(
FormattedlequestsPtr);

35. othervise':
36. system error;
37. end Sae
38. and xhile

13.1 vroc PARSER(iniut: TrafficUnitPtr,
output: AllCorrect,ParsedRequestsPtr,
AggregateOperatorsMessagePtr,RequestCount~essagePtr);

/* This routine parses all the requests in a traffic unit. (A */
/* traffic unit is either a request or a transaction.)

/* TrafficUnitPtr *1
1* a pointer to (traffic-id,TrafficUnit) ,1
/* AllCorrect : *1
1* indicates whether or not all the requests in the traffic*/
1, unit are syntactically correct ,/
/* ParsedlequestaPtr : *1
1* is one of the following two */

(1) a pointer to ((request-idrouting-indicator, */
1* no-pred~parsed-request)[....) if all the */
1* requests in the traffic unit are syntactically */
1* correct. *

(2) a pointer to ((request-idrequest, */
1* error-message)[,...)) if one (or more) of the */
1* requests in the traffic unit is not syntactically*/
r* correct. *
/* AggregateOperatorsMessagePtr : */

a pointer to ((request-id,(attribute, */
/* aggregate-operator) [,... •) ,....) *
/* RequeatCountfessagePtr : 'I

a pointer to (traffic-id~request-count) */
/* request-count : */
/* number of requests in a traffic nuit */13.2 end oc

24.1 jroc RUZIST-CMPOSU(JAMM: MessageType,NessaePtr,
Sgt=t: lormattediequestsPtr);

/* This routine transforms the requests into the form required*/

I
IL ,,-.

/* for processing at the backends. *

/* MessageType :*
1* indicates the type of a message *

1* essagePtr *
1* a pointer to a message. (It is either ParsedR~questsltr *
1* or a pointer to a message sent by a backend.) *

1* PareedlequestsPtr *
a pointer to ((request-id,routing-indicator,no-pred, *

1 parsed-request) 1,...)
1* ForuattedkequestePtr *

1* a pointer to ((request-idrouting-indicator, *
1* no-predsched-no,formatted-request)[.... .1)

24.2 end vro

module IP-RECEIVE
Programs MESSAGE,* SEDER, TRAFFIC-UNIT, BE-MESSAGE
datasets MessageBuffer

1* used to store messages for REQUEST-PREPARLXION *

8.1 RM MESSAGE(inut nothing, output: nothing);
1* This. routine gets the next message for REQUEST-PREPAR.ATION
1* and stores it in MessageBuffer. *

8.2 gqjd j~o

9.1 vroc SENDR(ji 1 jjt: nothing, output: sender);
/* This routine returns the sender name of the next message *
/* for REQUEST-PREPARATION *

/* sender *
1*the sender 'name of the next message for REQUEST-
1* PREPARATION *

9.2 end uro.

12.1 yroc TRAIFIC-UNIT(innyt: nothing, giatiaM.: TrafficUnitPtr);,
/* This routine returns a pointer to the next traffic unit for*/
/* REQUEST-PREPARATION *

1* TrafficUnitPtr :*
a painter to (traffic-id,TrafficUnit) *

12.2 9Apo

31.1-po 3B-MSAGE(1jM.: nothing, output.: M~ssageftr);
/* This routine returnee a pointer to the next message for *
/* REQUEST-PREPARATION sent by a backeud. There is a message *
/* from a backend for REQUEST-PUEPARATIOI when

- a retrieve request caused by an update request is *
1* completed

- a record has changed cluster when exescuting an update *
1* request *

1* Messeltr *

PAG 91

d a* a pointer to a message */
31.2 ean gs.

17.1 vroc SID-POST-PROCISSIIG(input: MessageTypeMessagePtr,
output: nothing);

/* This routine sends a message to POST-PROCISSING *1I. *1

/* NessageType : */
/* indicates the type of a message */
/* essagePtr : */
/* a pointer to a message */

17.2 end roc

25.1 proc BROADCAST-ALL-DIRUCTORY-MANAGMET(jut: FormattedRequestsPtr,
mitiut: nothing);

/* This routine broadcasts a set of formatted requests to all */
/* the backends *1
/* FormattedRequestsPtr : */
1* a pointer to ((request-id,routing-indicatorno-pred, *1
1* s ched-ao,formatted-request)[,...]) */

25.2 en, Proc

39. end "A&

3.2 Part IZ - _Th Insert Information aProcess

/* (1) Part II : The Insert Information Generation Process */
/* (2) Design : INSERT-INFORi&TION-GENERATION */
/* (3) Designers : A. Orooji, Z.Z. Shi, P.R. Stravser e/
/* (4) Date : Feb. 4, 1982 */
/* (5) Modified : Feb. 19, 1982 e/

Apr. 12, 1982 */
Apr. 26, 1982 */

/* May 25, 1982 */
Kay 28, 1982 */
Jun. 2, 1982 */

/* (6) Purpose : */
I* This is the Insert Information Generation Process. It *1
/* consists of the functions which must be performed during the *1
/* processing of an insert request to furnish additional */
/* information required by the backends.

PAGE 92

(8) Procedure Hierarchy for INSURT-INFORMATION-GEINRATION

INSBRT-INFOIrTIOI-GERLATION

I I I I I I II
DESCRIPTOR BACKD G IIG 13G IIG BROADCAST BROADCASTID SICTOR RZECKXVE$ RZCZIVE$ RZCZIVZ$ RZCZIV3$ AL ALL
GENERATOR MESSAGE ROUTING CLUSTER DESCRIPTOR ADDRESS DESCRIPTOR

INDICATOR ID GENERATION SEARCH

CLUSTER CINDT CINBT RE
ID ENTRY SELECT CLUJS CLOS
GENRATOR ADD ELEMENT CHECK

ADD SAVE

PAGE 93

(9) Program Structure of INSULT-IiORMATION-GEEUATIOI (Jackson Chart)

INORFAT]O
GE03LATION

I I

IITIAlIZATION process all
.------------------------

process a1*
essage

+ +I I I
I 4"i-.-- 4.---+

Ischeduling IZIG IZIG Iselect based on
check I CEIVI$ J, RXVCzE$ routing-indicator I

*------ + IMESSAE ROUTING 4----- --- 4
4 - INDICATOR.-- ,,.___ I'

i l

I I

ID orIBASC- TOR 4-

I- - IIIZIG I ACKIND XIls IG IIDESCRIPTOR IIdeqcriptor
SE€ slBeCTOR cluster-id I ezS ID exist

CLUSR - - check IESCRIPTOR G-N-ATOR check
ID 1 - n-1h i-

1 ou '-"---+ nlcnJOtr -- -----IIIL
Ilast I j ot0o1 descriptor lo~ descriptor Io
Icluster-id- last +- does not +-I I exists 4

*clusterid exist

BROADCASTI do BR DOADCAST Ido
ALL nothing ALL nothing

IGENInONI +-* DSCRZPTORI

Oil~ .*I -

PAGE 94

Program Structure of IACKEMD-SELECTOR (Jackson Chart)

ISELECTOR
4-,u.-4

I I

I Ifirst cluster id -|last cluster id_
for this request for this request
check Icheck

-4. 4" --- " 4------,-4. 4 .- 4. 4---,- "I e I I
ntfirst, lo1 1 first 10 I last Ia1 not last loicluster i cluster id cluster id 4- e cluster id +-I

III I

4-4 - + + - -

m t e rnow luster 4.--

SR jI .. se chetk 1

ISAVE ADD

' l ' I
4--4---44-*I DA 101not new Id

cluster 4II cluster +120

ID RMY SLEaCT
GEEL 4 ADD---

in ,n S U 3 T"" " Irnr---

FAGE 95

(10) Data Structures

1 /* The data structure definitions are included in the program *1
/* specifications. */

(11) Program Specifications

1. task IISET-INPORMATION-GUMRATION
/* request-id */
1* consists of (traffic-idrequest-no) which uniquely */
1* identifies each request being processed by MDB$ */
1* routing-indicator :*
1* indicates where results/messages from backends should go to*/
/* last : *1
1* a flag ('true' or 'false') used when processing an insert */
1* request. This value is returned by BACKEND-SELECTOR and it *1
1* indicates whether or not all the backends have returned a
1* cluster id (or a null value).
1* exist : */
1* a flag ('true' or 'false') used when processing a request *1
1* for a new descriptor id. This value indicates whether or *1
1, not the descriptor already exists. */
1* NewTrack *1
1* a flag ('true' or 'false') used when inserting a record. */
1* This value indicates whether or not this is the first */
1, record being inserted in a track. *1

2. do initialization work;
3. while 'true' do /* do forever */
4. jj according to the task scheduling this task should

release the processor
5. IM&
6. release the processor and wait;
7.AMdiL

/* get the next message for INSERT-INFORMATION-GENERATION */
8. erforIIG-RECEIVE$SMSSAGE;

/* Set the routing-indicator in the next message e/
/* for INSERT-INFORMATION-GENERATION */

9. perfora IIG-ECEIVS$ROUTIG-INDICATO(routing-indicator);
10. cse routing-indicator value
11. 'BACKEND-SELECTOR':

/* an insert request is being executed *1
/* receive the request-id and the cluster id (or a */
/* null value) returned by a backend */

12. 9erfola IIG-RECIIVE$CLUSTER-ID(request-id,cluster-id);
*/ Determine a backend for record insertion if all *1
/* the backends have returned a cluster id (or a
J* null value). Otherwise, save the cluster id (or ,/
/* null value) returned by the backend. *1
/* (BACKUND-SELECTOR will call CLUSTU-ID-GKnAOR*/
/* when there is a new cluster.)

13. gerfola BACKED-SELICTOR(request-id, cluster-id.

• .

PAGR 96

last, backend-no, NewTrack);
14. iL last
15. then

/* All the backends have returned a cluster */
/* id (or a null value).
/* Send the backend number selected for
/* record insertion to all the backends */

16. perform BROADCAST-ALL-ADDRESS-GENERATION(request-id,
backend-no, cluster-id, NewTrack);

17. end it

18. 'DESCRIPTOR-ID-GENERATOR':
/* request for new type-C subdescriptor *1
/* receive the request-id and the descriptor *1

19. verform IIG-RECEIVESDESCRIPTOR(request-id,descriptor);
/* The request for new type-C subdescriptor might */
/* have already been received from another backend.*/
/* In that case, the descriptor id has already been */
/* generated and broadcasted. */
/* Generate a descriptor id if it is not already *1
/* generated */

20. pelform DESCRIPTOR-ID-GENERATOR(descriptor,
exist, descriptor-id);

21. if exist - 'false'
22. then

/* broadcast the descriptor id to all the backends *1
23. perform BROADCAST-ALL-DESCRIPTOR- SEAZCR(request-id,

descriptor, descriptor-id);
24. A if

25. "otherwise':
26. system error;
27. 11-cs
28. mat Ad ,

13.1 proc IACK]U-SLECTOR(input: request-id, ioMut/outLma: cluster-id,
output: last,backend-no,NewTrack);

1* This routine is called whenever a backend returns a cluster */
/* id (or a null value). It determines a backend for record */

/* insertion when all the backends have returned a cluster id *1
/* (or a null value). Otherwise, it saves the cluster id (or */
/* null value) returned by a backend. *1
/* (This routine will call CLUSTER-ID-GEINRATOR when there is */
/* a new cluster.)/* *
1* request-id : *I
/* consists of (traffic-id,request-no) which uniquely /
/* identifies each request being processed by H18
/* cluster-id : */
/* uniquely identifies each cluster */
/* loackends : *1
/* total number of backends in KDBS. (This is a variable /

7 !V-

PAGE 97

1* defined in SYSGEN.) *1
/* last : *1
1* a flag (true' or 'false'). This value indicates whether *1

or not all the backen~s have returned a cluster id (or a
/* null value). */
/* backend-no : */
/* the number of the backend minicomputer selected to insert*/
/* a new record into the database store */
/* NewTrack :*
1* a flag ('true' or 'false'). This value indicates whether e/

or not this is the first record being inserted in a track*/

/*
* struct request-cluster-id {
* rid /* (traffic-id,request-no) */
* cids-received-count /* an integer iz, %ting number
* of cluster ids received for t Nst rid */
* cid /* cluster id received for requet Id */
* /* each cluster id received for -test is */
* /* either null or has the same v j the */
* /* other non-null cluster ids reL d for */
* /* the request *1
*/}

13.2 list all-req-clus-id; /* every element of this list consists
of the three parts in request-cluster-id */

13.3 if request-id - rid of one of the elements in all-req-clus-id list
13.4 then

/* this is not the first cluster-id received for request */
/* request-id */

13.5 ptr :- pointer to the element of all-req-clus-id
with rid - request-id;

/* save the cluster id received from the backend if needed */
13.6 perform REQ-CLUS-CHECK-SAVE(cluster-id, all-req-clus-id, ptr);
13.7 ese1

/* this is the first cluster-id received for request */
I* request-id */
/* add an element to all-req-clus-id list */

13.8 erform REQ-CLUS-BLIKKNT-ADD(request-id,
cluster-id, all-req-clue-id, ptr);

13.9 eni i
/* check to see whether or not all the backends have */
/* returned a cluster id (or a null value)

13.10 1L cids-received-count < NoBackends
13.11 thn

/* not all the backends have returned a cluster */
/* id (or a null value)

13.12 last :- 'false';
13.13 .a

" * all the backends have returned a cluster id (or */
/* a null value) C-

PAGE 98

13.14lat:'tu ;
13.15 i i~t)-nl
13.16 then

13.17 pefrm______-IEUO~lutr-d*

13.18 perform CIEBT-EMTY-ADD(cluster-id);
13.19 end if

1* select a backend for record insertion ~
13.20 perform CINBT-SELECT(cluster-id, backend-no, NevTrack);
13.21 delete eleisent(ptr) in all-req-clue-id list;
13.22 end if
13.23 end Droc

13.8.1 yrac REQ-CLUS-ELENEN-ADD(input: request-id,cluster-id,
iniput/output: all-req-clus-id, output: ptr)

1* This routine adds an element to all-req-clus-id list *
13.8.2 list all-req-clue-id;
13.8.3 add an element to all-req-clue-id list;
13.8.4 ptr :- pointer to the element just added;
13.8.5 rid(ptr) :request-id;
13.8.6 cid(ptr) :cluster-id;
13.8.7 cids-received-count(ptr) :- 1;
13.8.8 end proc

13.6.1 proc REQ-CLUS-CKECK-SAVE(input: cluster-id ,ptr,
input/outyut: all-req-clus-id, ouput~: nothing);

/* This routine saves the cluster id received from a *
1* backend. if needed *

13.6.2 list all-req-clue-id;
13.6.3 cids-received-count(ptr) :- cids-received-count(ptr) + 1;
13.6.4 if cluster-id -- null
13.6.5 then

1* cluster id received from the backend is not null *
13.6.6 if cid(ptr) - null
13.6.7 then

/* all the previous cluster ids received from *
1* backends are null *
1* cluster-id -- null, cid(ptr) - null *

13.6.8 cid(ptr) :- cluster-id;
13.6.9 sjin

/* cluster-id -null, cid(ptr) - null *
13 .6.10 jjcluster-id -cid(ptr)

13.6.11 lhbM
1* cluster-id -null, cid(ptr) -null, *
/* cluster-id -cid(ptr) *

13.6.12 'system error';
13.6.13 enjL
13.6.14 sat A
13.6.15 Mn jL
13.6.16 IVA roc

PAGE 99

13.18.1 proc CINBT-ENTRY-ADD(input: cluster-id, output: nothing);
/* This routine adds an entry to cluster-id-to-next-backend *1
/* table

13.18.2 add an entry to cluster-id-to-neit-backend table;
/* cluster id for this entry is cluster-id ,/
/* backend number for this entry is a random ,/
/* number bn (I -< bn -< NoBackends) *1

13.18.3 end uroc

13.20.1 yroc CINBT-SELECT(input: cluster-id, output: backend-no.NewTrack);
1* This routine selects a backend for record insertion *1

13.20.2 backend-no :- backend selected (using CINBT) for record insertion;
13.20.3 set NewTrack (using CINBT);
13.20.4 update CINBT if needed;
13.20.5 end proc

13.17.1 2roc CLUSTEU-ID-GENERATOR(inut: nothing, output: cluster-id);
/* This routine generates a new clster id. *//* *

/* cluster-id :*
/* uniquely identifies each cluster ,/

13.17.2 end proc

20.1 r DESCRIPTOR-ID-GENU.ATOK(inMut: descriptor,
output: exist,descriptor-id);

/* This routine generates a new descriptor id for a descriptor ,/
/* if it is not already generated. *1/* *

/* exist : *1
1* a flag ('true' or 'false'). This value indicates whether *1
1* or not the descriptor already exists. */
/* descriptor-id :*
1* uniquely identifies each descriptor t/

/* This first implementation of DESCRIPTOR-ID-GENZRATOR keeps w/
/* the descriptor ids generated from system start up to system*/
/* shut down (or until database reorganization). We need to t/
/* keep the descriptor ids generated because multiple backends*/
/* may request a descriptor id for the same descriptor. *1

/t
t struct descriptor-descriptor-id {
* deac /* descriptor t/

* desc-id /* corresponding descriptor id tl
2 }
*/

20,2 list desc-desc-id-list; /* every element of this list

II

PAGE 100

has the two elements in descriptor-descriptor-id */
20.3 if descriptor - desc of one of the _iments in desc-desc-id-list
20.4 then

2* the descriptor id is already generated */
20.5 exist :- 'true';
20.6 else

/* the descri:.,-or id is not generated yet */
20.7 exist :- false';
20.8 descriptor-id :- generate a descriptor id;
20.9 add (descriptor,descriptor-id) to desc-desc-id-list;
20.10 end if
20.11 end Proc

module IIG-RECEIVE
yrozrams MESSAGE, ROUTING-INDICATOR, CLUSTER-ID, DESCRIPTOR
datasets MessageBuffer

/* used to save messages for INSERT-INPOEMATION-GEISATION *1

8.1 proc MESSAGE(innut: nothing, output: nothing);
/* This routine gets the next message for INSERT-INFORMATION- *1
/* GENERATION and stores it in MessageBuffer. *1

8.2 end Proc

9.1 proc ROUTING-INDICATOR(input: nothing,
output: routing-indicator);

/* This routine returns the routing-indicator in the next *1
/* message for INSERT-INFORMATION-GENERATION. Cl

/* routing-indicator :l
I* indicates where results/messages from backends should go to*/

9.2 end proc

12.1 Proc CLUSTER-ID(input: nothing, output: request-id,cluster-id);
/* This routine returns the request-id and the cluster id (or a *1
/* null value) returned by a backend. *11* *1
/* request-id *1
1' consists of (traffic-idrequest-no) which uniquely *1
IC identifies each request being processed by MDBS C/

/* cluster-id : *l
1* uniquely identifies each cluster *1

12.2 end Proc

19.1 o DESCRIPTOR(inut: nothing, oUtyut: request-id~descriptor);

/* This routine returns the descriptor sent by a backend. CI
1* *1
/* request-id : *1
I' consists of (traffic-idrequest-no) which uniquely *l
I' identifies each request being processed by MDBS Cf

19.2 jnj azc

nd =oisii

PAGE 101

16.1 proc BROADCAST-ALL-ADDRSS-GENEATION(iJ&2M: request-id.
backend-nocluster-id, outout: nothing);

/* This routine broadcasts the backend number selected for record*/
/* insertion to all the backends. *1/* *1

1* request-id : */
I* consists of (traffic-idrequest-no) which uniquely *1

/* identifies each request being processed by MDBS */

/* backend-no : *I

/* the number of the backend minicomputer selected to insert */
1* a new record into the database store *1
/* cluster-id */
/* uniquely identifies each cluster */

16.2 gnad roc

23.1 proc BROADCASt-ALL-DESCRIPTOR-SARCR(innut: request-id,
descriptordescriptor-id, output: nothing);

/* This routine broadcasts a new descriptor id to all the backends.*/1* */

/* request-id *1
/* consists of (traffic-idrequest-no) vhich uniquely identifies*/
/* each request being processed by MDBS */
/* descriptor-id : */
/* uniquely identifies each descriptor */

23.2 end proc

29. and task

1.3 Part III - The Post Processina Process

/* (1) Part III : The Post Processing Process */
1* (2) Design : POST-PROCESSING *[
1* (3) Designers : A. Orooji, Z.Z. Shi, P.R. Stravser */
/* (4) Date : Feb. 4, 1982 */
1* (5) Modified Feb. 19, 1982 *1
1* Apr. 12, 1982 */
/* Apr. 26, 1982 */
S* Jun. 22, 1982 */
S* Jun. 25, 1982 */
S* Jul. 8, 1982 */
' I* (6) Purpose *1
1 * This is the Post Processing process. It consists of the *1
/* functions which must be performed before the results of a

/* request or a transaction are forwarded to the host machine. *1

PAGE 102

Procedure Hierarchy for POST-PROCESSING

POST-PROCESSING

I I L
PP PP PP P

RECEIVE$ RECEIVE$ CTRL E
MESSAGE SENDER TASK TASU

4C4- 4r- -1-------4v...
pp pp pp PP PP PP REPLY

IMDICATOR RESULTS

REPLYM R4BNITOR

SEND-COMPLETION-SIGNAL PP-RLESULTS$STORE

P-REQUEDST-OOUNTSLAST-REQU PST-C RZISc "

II i

... IL ,. .P-_ T- C O U- " $" r -- '.nTll a , ,

PAGE 103

Program Structure of POST-PROCSSIIG (Jackson Chart)

PSTI IPROCE-SING

I I

INITIALIZATIONl iprocess allI
4.--- +messages

4---------....4

process a
message

.------4 ---------

scheduling PP PP select based on
check RECEIVE$ RECEIVES message sender

4.--- -4. MESSAGE SENDER
4--------*4 4.---------4 I

I i

La task in to Iatski o
controller a backend +-1

4.-----------4

J +
CTRLT BE

TAMK TASMMSG KSG

PAG 104

Program Structure of PP-CTRL-TAfM-NG (Jadkson Chart)

CTRL
TASK
NPSG

4------+I I

PP - select
RECEIVE$ based onMEKSSAGE messagte
TYPE type

S+---. --------- "Jnumber of 1oI aggregate Ia I Ieasto 10requests in a +-I operators -I it -traffic unit + . errors
I I I II I

- +- - - 4-4I I I I II.-.-. 4----.g +-- 4- t 4 --.
pp PP PP PPYRECEIVE E T Rp CZlVE$ A~rIRCIR WM

ChoT SAVE OC S(SAES4----- ..- . +" -------4. '-'

PAGE 105

Program Structure of PP--E-TASK-MSG (Jackson Chart)

IPPBET

IMSG
I I

I I

PP selectRRczIVz$ based on

ROUTING routing-indicatorINDICATOR 4
4--- ,- I I

4 -...4 4 --.

message oMssaCe or toIfor t A!
IREPLY JPOST

4-+ - -- ------ 4.
I I I

I $ REPLY I I $ AGGREGATE resultsnciv ONTR EEIE POST readyRESULTS PAR-----+ PTIAL OPERATION check
4 --- RESULTS 4 +.-.

4- +-----

Iresults lot I results lotIady - not +
4--- + ready

*-- ------ , .. 4

SREPLY
dtn

MONITOR RELYonothig I

-- t

PAGE 106

Program Structure of REPLY-NOIITOR (Jackson Chart)

R REPLY-MONITOR I

select
based on
routing-indicator

.... -------+ +
requests-with- lot I AGGREGATE-POST lo REPLY-HONITOR 01
error +- j OPERATION 4- message
message message-- -... ... + -- + +l

I +I - 4*0-- +--* - -----

send error send the SEND I PP Results- last
messa~ges to results to COMPLETION ULTS$ Buffer results
the host the host SIGNAL uSTORE fll check
m chine machine + + check

----------- * +----4. .4-.-

IResultsluffer to I esultsluffer lot last to0t not last tot
full not full results - results

I I
+

-- 4-. 4 4---------- -4

send the I send th I SN I do
results to nothing results to COMPLETIONI nothing
the host the host SIGNAL -
machine machine .---

q-------- -----

PAGE 10 7

(10) Data Structures

1* The data structure definitions are included in the program *
/* specifications.

(11) Program Specifications

1. Task POST-PROCESSING
1* sender : *

1* the gender name of the next message for POST-PROCESSIEG; *
1* the possible values are: 'a task in the controller' and 'a ~
1* task in a backend' *

2. do initialization work;
3.]IkU& 'true' d& 1* do forever *
4. if according to the task scheduling this task should release

the processor
5. then
6. release the processor and wait;
7. end 1Lj

1* get the next message for POST-PROCESSING *
8. nverform PP-RECEIVE$MSSAGE;

1* get the sender name of the next message f or POST-PROCESSING *
9. pSefor PP-UECIV SEND(sender);
10. case sender valu
11. 'a task in the controller':
12. p~fr PP-CTRL-TASK-MSG;
13. 'a task in a backend':
14. nizlaza PP-BE-TASK1-MSG;
15. 'otherwise':
16. system error;
17. 9M4 &un.
18. sad ibLi

12.1 li2S. PJ-CTRL-TASK-KSG (12IL nothing, outpu: nothing)
/* This routine is used when there is a message for POST-
/* PROCESSING from a task in the controller. *

/* TrafficUnit :*
1* is either a request or a transaction C

/* traffic-id : *
1* an integer that identifies a traffic unit *

1* requst-id
1* consists of (traffic-idrequest-no) ohich uniquely C
/* identifies each request being processed by HDRS *

/* MessageType:
/* indicates the type of a message (from a task in the *
/* controller) for POST-PROUSIIG; the possible values are: *
1* 'number-of -requests-ia-a-traff ic-uait message',* 'aggregate-*/
IC operators message' and 'requests-with--error message' C

PC RequestCountflessage~tr :C

PAG& 108

1* a pointer to (traffic-id,request-count) */
/* request-count *1
/* number of requests in a traffic unit *1
/* AggregateOperatorsMessagePtr : *I
1* a pointer to ((request-id,(attribute, *[
1* aggregate-operator)[,...])L ,..]) *1
/* RequestsWithErrorPtr *1
1* a pointer to ((request-id,requesterror-aessage)[,...]) *1
/* routing-indicator : I
/* indicates the type of the results sent to REPLY-MONITOR; *1
1* its value is: "requests-with-error message' *1

/* The message is from REQUEST-PREPARATION. */
/* There is a MessageType that indicates the message contains *1
1* - number of requests in a traffic unit (provided by PARS1R)*/
/* - error messages (provided by PARSER) */
1* - aggregate operators in a retrieve request (provided by *[

I* PARSER)
12.2 Perform PP-RECEIVE$MESSAGE-TYPE(MessageType);
12.3 case MessageType value
12.4 "number-of-requests-in-a-traff ic-unit message':
12.5 perform PP-RECEIVE$REQ-COUNT(RequeatCountMessagePtr);

/* save the information to be used by RIPLY-MONITOR later *1
12.6 perform PP-REQUEST-COUT$SAVR(RaquestCountessagePtr);

12.7 "aggregate-operators message':
12.8 perform PP-RECIIVRAGGR-OP(AgreateOpertorss.eeegePtr);

/* save the information to be used by AGGIWATI-POST- e/
/* OPERATION later */

12.9 Perform PP-AGGR-OP$SAV(AggregateOperatorsfls*ePtr);

12.10 'requests-with-error message':
12.11 vetform PP-RECIVE$ROR-KSG(Requestsitlrrortr);

/* send the error messages to the host machine */
12.12 routing-indicator :- 'requests-with-error essage';
12.13 perform REPLY-NONITOR(routing-indicator, MULL,

Request seithlrrorPtr);

12.14 'otherwise':
12.15 system error;
12.16 end case
12.17 =I poc

14.1 ;.ia PP-W-TASK-MSG (1Mnu: nothing, motNa: nothing);
/* This routine is used when there is a message for POST- *1
/e PROCESSING from a task in a backead. 1

/e request-id : */
I* consists of (traffic-id~reust-mo) which miqely
/* identifies each request being pro sed by MDD '
/* routing-indicator :
/* indicates where the results shold go to; it &Ieo "/

PAGE 10 9

1* indicates the type of the results; the possible values */
are: 'REPLY-MONITOR" and "AGGREGATE-POST-OPERATION' *1

/* Results : */
1* results returned from a backend *1
1* PartialResults : *1
1* partial results returned from a backend (for retrieve *1
/* requests with aggregate operators)
/* last : */
1* a flag (true' or 'false'); it indicates vhether or not*/
/* all the backends have returned their results */
/* AggregateResultsPtr : *1
1* a pointer to the results computed by AGGREGATE-POST- */
1* OPERATION from partial results *1

/* Get the request-id and the routing-indicator in the message */
14.2 perform PP-RECEIVE$ROUTING-INDICATOR(request-id, routing-indicator);
14.3 case routing-indicator value
14.4 "REPLY-MONITOR':

/* receive the results returned by the backend */
14.5 Perform PP-RKCEIVE$RESULTS(Results);

/* send the results to the host machine */
14.6 perform REPLY-MONITOR(routing-indicator, request-id, Results);

14.7 "AGGREGATE-POST-OPERATION":
/* receive the partial results returned by the backend */

14.8 perform PP-RECEIVE$PARTIAL-RESULTS(PartialResults);
14.9 perform AGGREGATE-POST-OPERATION(request-id,

PartialResults, AggregateResultsPtr * last);
14.10 it last
14.11 then

/* The results are ready. */
/* Send the results to the host machine. *1

14.12 perform REPLY-MONITOR(routing-indicator, request-id,
AggregateResultsPtr);

14.13 9A iL

14.14 otherwise':
14.15 system error;
14.16 enS cas
14.17 j4d proc

12.13.1 i R1PLY-M0ITOR(pnju: routing-indicator,request-idResults,
outnut: nothing);

/* This routine sends the results to the host machine. It *1
1* viii also send a completion signal to the host machine */
1* vhen all the results have been sent. */r* *1
/* routing-indicator : */
/* indicates the type of results; the possible values are:*/1* "requests-vith-error message', "RKPLY-KOIITOR° and
1* 'AGGRIGATE-POST-OPERATION' *1
/* request-id : *[

6 -, n. . . , . .

PACE 110

/* consists of (traftic-idrequest-no) which uniquely *1
/e identifies each request being processed by MDBS *1
/* Results :*
/* is one of the following two */
/* - the results returned from a backend */
/* - a pointer to the results when the results are from*/
1* either PARSER or kGGREGAT-POST-OPERATION *1
/* last :
1* a flag (true" or 'false'); it indicates whether or not*/
1* all the backends have returned their results */
/* BufferFull :*
/* a flag (true" or 'false'); it indicates whether or not*/
/* the buffer used for storing the results returned by the*/
/* backends is full */

12.13.2 caje routing-indicator v.alue
12.13.3 'requests-vith-error message':
12.13.4 send the error messages to the host machine;

/* Results is pointing to the results */

12.13.5 'GGRGATR-*OST-OPlAfION':
12.13.6 send the results of aggregations to the host machine;

/* Results is pointing to the results */
/* send a completion signal to the host machine */

12.13.7 Rform SDID-CONFLETIOI-SIGIAL(request-id);

12.13.8 'REPLY-4NOITOR':
/* store the results returned by the backend in a buffer */

12.13.9 Prform PP-RESULTS$STORE(request-id, routing-indicator,
Results, BufferFull, last);

12.13.10 jj SufferFull
12.13.11 lhi

/* the buffer used for storing the results is full */
12.13.12 send the results to the host machine;
12.13.13 end iL
12.13.14 ii last
12.13.15

/* All the backends have returned their results. */
/* Send the results remaining in the buffer
/* to the host machine. */

12.13.16 send the results to the host machine;
/* All the results for the request have been sent*/
/* to the host machine. */
/* Send a completion signal to the host machine. */

12.13.17 Pufrg SEED-COKPLETION-SIGAL(request-id);
12.13.18 And iL

12.13.19 otherwise':
12.13.20 system error;
12.13.21 end se
12.13.22 an roc

PAGE Il1

12.13.7.1 Proc SEND-COMPLETION-SIGNAL(input: request-id, output: nothing);
/* This routine sends a request-completion signal to the */
/* host machine. It also checks to see whether all the *1
/* results for a transaction have been sent to the host */
/* machine. If so, it sends a transaction-completion signal*/
/* to the host machine. */
/* *

/* request-id : */
1* consists of (traffic-idrequest-no) which uniquely *1
1* identifies each request being processed by HDBS */
/* TransactionDone : */
1. a flag Vtrue' or 'false'); it indicates whether or *1
1* not all the requests in a transaction have been *1
1* completed */
1* NonTransaction : *1
1* a constant that is assigned to request-no of a */
1. request that is not part of a transaction. (We
1* recall that a request is identified by its request-id*/
/* which is (traffic-id,request-no). If the request is ./
1* not part of a transaction, traffic-id identifies the *1
1. request and request-no can be set to NonTransaction. *1
1* By doing this, we will be able to tell whether or not*/

a request is part of a transaction.) *1

12.13.7.2 send a request-completion signal to the host machine;
/* Check to see if the request is part of a transaction */

12.13.7.3 if request-no -- NonTransaction
12.13.7.4 then

/* The request is part of a transaction. *1
/* Indicate that one of the requests in the traffic *1
/* unit has been completed and check to see whether *1
/* all the results for the traffic unit have been */
/* sent to the host machine. */

12.13.7.5 perform PP-REQUEST-COUNT$LAST-REQUEST-CRECK(traffic-id,
TransactionDone);

12.13.7.6 i TransactionDone
12.13.7.7 then

/* All the results for the traffic unit have *1
/* been sent to the host machine. *1

12.13.7.8 send a transaction-completion signal to the
host machine;

12.13.7.9 sn iL
12.13.7.10 IRA "
12.13.7.11 ed iBX2

14.9.1 roc AGGREGATI-POST-OPERATION(input: request-id,PartialResults,
output: AggregateResultsPtr,last);

/* This routine performs the aggregate operations on the *1
/* partial results returned by the backends. It will set *1
/* 'last' to indicate whether or not all the backends have *1
/* returned their partial results. *1/* */

PACE 112

1* request-id */
/* consists of (traffic-id,request-no) which uniquely */
/* identifies each request being processed by MDBS */
/* PartialResults :
1* partial results returned from a backend (for retrieve */
1* requests with aggregate operators)
/* AggregateesultsPtr :*

a pointer to the results computed by AGGREGATE-POST- */
1* OPERATION from partial results *1
/* last :*

a flag ('true' or 'false'); it indicates whether or not*/
1* all the backends have returned their results *1
/* NoBackends : *1
1* total number of backends in MDBS. (This is a variable *1
/* defined in SYSCEN.) *1

14.9.2 end proc

module PP-RECEIVE
Programs MESSAGE, SENDER, MESSAGE-TYPE, REQ-COUNT, AGGR-OP,

ERROR-HSG, ROUTING-INDICATOR, RESULTS, PARTIAL-RESULTS
datasets MessageBuffer

/* used to store messages for POST-PROCESSING */

8.1 proc MESSAGE (innut: nothing, outut: nothing);
/* This routine gets the next message for POST-PROCESSING */
/* and stores it in MessageBuffer. *1

8.2 end 1proc

9.1 proc SENDER (invut: nothing, output: sender);
/* This routine returns the sender name of the next message for */
/* POST-PROCESSING. */1* */

/* sender : *1
1* the sender name of the next message for POST-PROCESSING; */
1* the possible values are: 'a task in the controller' and *f
/* 'a task in a backend' *1

9.2 end proc

12.2.1 vroc MESSAGE-TYPE (input: nothing, output: MessageType);
/* This routine returns the message type of the next message *1
/* (from a task in the controller) for POST-PROCESSING. *//* */
/* MessageType : *1
1* indicates the type of a message (from a task in the
/* controller) for POST-PROCESSING; the possible values are: *1
1* 'number-of-requests-in-a-traffic-unit message', *1
1* 'aggregate-operators message' and 'requests-with-error */
1* message' *1

12.2.2 19A poc

12.5.1 R.L. REQ-COUNT (input: nothing, o.t.put: RequestCount~essagePtr);

PAGE 113

/* This routine returns RequestCountMessagePtr sent by REQUEST- *1
/* PREPARATION. *//* */

/* RequestCountMessagePtr */
1* a pointer to (traffic-id,request-count) */
/* request-count : */
/* number of requests in a traffic unit */

12.5.2 end roc

12.8.1 proc AGGR-OP (input: nothing, opju: AggregateOperatorsMessagePtr);
/* This routine returns AggregateOperatorsMessagePtr sent by */
/* REQUEST-PREPARATION. *//* */

/* AggregateOperatorsMessagePtr */
1* a pointer to ((request-id,(attribute, */
/* aggregate-operator)[,...]I,...]) */

12.8.2 end Proc

12.11.1 proc ERROR-MSG (input: nothing, output: RequestsWithErrorPtr);
/* This routine returns RequestsWithErrorPtr sent by REQUEST- *1
/* PREPARATION. *//* */

/* RequestsWithErrorPtr */
/* a pointer to ((request-id,request,error-message)[,...]) *1

12.11.2 end vroc

14.2.1 proc ROUTING-INDICATOR (input: nothing,
outnut: request-id,routing-indicator);

/* This routine returns the request-id and the routing-indicator*/
/* in the next message (from a backend) for POST-PROCESSING. *//* */

/* request-id : */
/k consists of (traffic-id,request-no) which uniquely */
/* identifies each request being processed by MDBS */
/* routing-indicator :*
/* indicates where the results should go to; it also */
1* indicates the type of the results; the possible values *1
/* are: 'REPLY-MONITOR' and "AGGREGATE-POST-OPERATION" *

14.2.2 end Proc

14.5.1 yroc RESULTS (input: nothing, output: Results);
/* This routine returns the results sent by a backend. *//. */

/* Results */
/* results returned from a backend *1

14.5.2 end Proc

14.8.1 np. c*PARTIAL-RESULTS (input: nothing, output: PartialResults);
/* This routine returns the partial results sent by a backend. */
/* */

/* PartialResults : */
/* partial results returned from a backend */

14.8.2 end proc

PAGE 114

end module

module PP-REQUEST-COUNT
vrograms SAVE, LAST-REQUEST-CHECK
datasets CountBuffer /* used to save RequestCountMessaePtr's *

12.6.1 proc SAVE (in ut: RequestCountNessagePtr, oupju: nothing);
/* This routine saves RequestCountMessagePtr to be used by
/* LAST-REQUEST-CHECK later.I* */
/* RequestCountMessagePtr *1

a pointer to (traffic-idrequest-count) */
/* request-count :*
/* number of requests in a traffic unit */

12.6.2 end proc

12.13.7.5.1 Proc LAST-REQUEST-CRECK(inu.t: traffic-id,
output: TransactionDone);

/* This routine remembers that one of the requests in the */
/* traffic unit has been completed. It will set */
/* "TransactionDone" to indicate whether or not all the *1
/* requests in the traffic unit have been completed. */
/* *1
I* traffic-id : *I
1* an integer that identifies a traffic unit */
/* TransactionDone :*

1* a flag ('true' or 'false'); it indicates whether or */
1* not all the requests in a traffic unit have been *1
/* completed */

12.13.7.5.2 remember that one of the requests in the traffic unit has
been completed;

12.13.7.5.3 if all the requests in the traffic unit have been completed
12.13.7.5.4 then
12.13.7.5.5 TransactionDone :- 'true';
12.13.7.5.6 free the space used to store the number of requests

in the traffic unit;
12.13.7.5.7 else
12.13M.5.8 TransactionDone :f 'false';
12.13.7.5.9 end if
12.13.7.5.10 end Proc

end wodule

modle1 PP-AGGI-OP
Rroaraw SAVE

/* there will be other procedure(s) in this module, e.g., a */
/* procedure that returns the aggregate operators for a request*/

PAGE 115

datasets AggregateBuffer
/* used to save AggregateOperatorsMessagePtr's */

12.9.1 roc SAVE (innut: AggregateOperatorsMessagePtr, outPut: nothing);
/* This routine saves AgregateOperatorsMessagePtr to be used */
/* by AGGREGATE-POST-OPERATION later.I* */

/* AggregateoperatorsMessagePtr : *1
/* a pointer to ((request-id,(attribute, */
/* aggregate-operator)f,...)L ,...) *

12.9.2 end proc

end Module

module PP-RESULTS
Proarams STORE

/* there will be other procedure(s) in this module, e.g., a */
/* procedure that returns the results stored in ResultsBuffer*/

datasets ResultsBuffer
/* used to store results returned by backends *1

12.13.9.1 vroc STORE (input: request-id,routing-indicator,Results,
output: BufferFulllast);

/* This routine stores the results returned by a backend in *1
1* a buffer (the results will be used by REPLY-MONITOR
/* later). It will set "BufferFullv to indicate whether or */
/* not the buffer used for storing the results returned by *1
/* the backends is full. It will also set 'last' to */
/* indicate whether or not all the backends have returned */
/* their results. '//* */

/* request-id */
/* consists of (traffic-idrequest-no) which uniquely */
/* identifies each request being processed by MDBS */
/* routing-indicator : */
1* indicates the type of results
/* Results :
/* results retuned from a backend */
/* BufferFull :
1/* a flag ('true' or 'false'); it indicates whether or */
1* not the buffer used for storing the results returned */
/* by the backends is full
I* last : */

a flag (Vtrue' or 'false'); it indicates whether or */
/* not all the backends have returned their results */
/* NoBackends :*
/* total number of backends in MDBS. (This is a variable */
/e defined in SYSGEN.) */

12.13.9.2 store the results into ResultsBuffer;
12.13.9.3 set the flag 'BufferFull';

7,1

PAGR 116

12.13.9.4 set the flag 'last';
12.13.9.5 en go

19. end "A

PAGE 117

APPENDIX C

THE SSL SPECIFICATION FOR RECORD PROCESSING/
The SSL specification for record processing is given in this appendix.

The specification consists of five parts: a control subfunction of record

processing, a retrieve processing subfunction, an insert processing subfuc-

tion, a delete processing subfunction and an update processing subfunction.

They are specified in Parts I, II, III, IV and V respectively.

C.1 Part I-_he Control Subfunction 2L Record Procsing

/* (1) Part I : The control subfunction of Record Processing */
/* (2) Design : RECORD PROCESSING */
1* (3) Designers : Re Xingui, Masanobu Higashida */
1* (4) Date : Jan. 28, 1982
1* (5) Modified : Feb. 1, 1982 */
1* Feb. 18, 1982 */
/* Mar. 11, 1982
/* April 1, 1982 *I
/* April 9, 1982
/* April 15,1982 */
/* April 27,1982 */
1* May 17, 1982 */
/* May 19, 1982 */
/* (6) Purpose : *1
1* The control subfunction of Record Processng is designed for */
/* analyzing the information coming from Directory Management to decide*/
/* what request processing subfunction should be executed, and then to */
/* transfer control to the relevant procedure. */
1* (7) Input: *1
1* Input consists of a formated request and a set of disk
/* addresses where the relevant data are stored. */

II II . . _

1ACK 116

/* (8) Procedure i.orarchy for The Control Su hnation 'I

Control 8bfunacti~i of Record Processing

Retrieve Inrt elite
Procsst]Process fceuin
lubfuictle Subfuactlon Subtunet iS uSbf vct ion

/* (9) Jackson Chart:

I Control biumegtio I
I Secord ProcesLng II I

1 I
+4'.- - . -- 4 - -- -- -

Get an item LaIhcs a j IIfrmCTOL
a oequest TitiUl the preocessing fianihedlbs t e qme"t:

- + II I1

PAG 119

/* (11) Program Specifications */

1 &MI CORDJRDCESS lG;

/* This task is to be used to analyze a request and then execute *1
/* the relevant procedure. Cl

2 Jja REQUEST: string;
3 j&L ADDRESSES: integer;
4 scalar NewTrack: logical;

5 Nhi 1*true" 4o /* Do forever.
6 vertors GETEQ_DDEKW(REQUEST, ADDRESSES, NewTrack);

/* Get a message(a request REQUEST, */
/* a set of addresses ADDRESSES C/
/* and new track indicator RevTrack) *1
/* from a queue. */

7 case REQU ST.REQUEST TYPE .aJj a

S RETRIEVE":
gefra RETRIEVEPROCESSING(RQUEST. QUERY,

REQUEST.TARGET, ADDRESSES);
9 UPDATE°:

gerform UPDATEPROCESSIG(REQUEST.QUEKRY, ADDRESSES,
REQUEST.attribute,REQUEST.valuel);

10 'DELETI:
Rerform DELETE.PROCESSING(REQUEST. QUERY, ADDRESSES);

11 'INSERT':
perform INSERT PROCESSING(REQUEST.RECORD, ADDRESSES,NevTrack);

12 2Md ciae;

13 nefom SEUDJIESSAGE /* Send completion signal to CONTROLLER. *l

14 end while;

I*1 L _ _ _ __..

PAG 120

C.2 hak U-fa Retieve Processing uhktncligg

U* (1) part II : Retrieve Processing Subfunction
/* (2) Design : RCO PROCSSING *1
I* (3) Designers : Re lingui, Masanobu ligashida *1
/* (4) Date : Jan. 28, 1982 */
/* (5) Modified : Feb. 1, 1982 */
/* Feb. 18, 1982 */
/* sMar. 11, 1982 *1
I* April 1, 1982 *1
/* April 9, 1982 */
/* April 15,1982 */
/* April 27,1982 */
/* NKay 17, 1982 *1
/* May 19, 1982
/* (6) Purpose : */
/* The procedure is designed for retrieving the records */
/* satisfying the query in the request. */

PAGE 121

1* (6) Procedure lierarchy for Letrieve Processing Subfuction */

Retrieve ProcesI in Subfunction

+----- ---- ; - --.-.------ ------------- +

G-B n --m M PRJCTFUSHE

PETC TO AJGREGU STUI1

TR&K3W'UOPZWTIOX BU~ffl

PAM 122

/* (9) Jackso Chart:

request,
pros~a

I + - -4

Get RESULT Retrieve flusin =ESUIT_.I ---. 4) -----.

I I

Initialie 4 Process data. 1*1 Stuff rsls
partial results track by track - Ipartial result

i I

I Fetch one track Retrieve
to TRACK IrnI I records I

-4--+--

Select records 1*1
in TRACK BUFE 4-
one by one
4 I

I Check whether the
record has bee nmarked for deletion

I I

I Deleted lol I Not deleted Iol
+-----------, 4 -4

I I
I Do nothing I JCheck whether the 1*
----------- record satisfies

the query

Saife IoWe not satisfied lo

Saisie '
ProcessgI
I l I

I I I Do nothing I

Collect 1o Aget lo
the 1- operation 4-
= Isults acd collect

t Zo SULT the results
BUFER into RUMUT-

BUFFER4--------

staff JnO I Stuff into I
the buffer[IIthe buffer

O 4.

PAG 123

ICheck whether the
record satisfies
the query

ICheck the record 1with each
conjunction

ICheck the record 1
with each
redicate in
he conjunction

- - - -

PAGE 124

1* (11) Program Specifications *

8.1 proc RETRIEVEPROCESSING(input: QUERY,TARGETADDRESSES);
/* This procedure is to be used for processing of RETRIEVE request. *

8.2 'list QUERY,TARGRT,result: string;
8.3 set ADDRESSES: integer;
8.4 array TRACK_BUFFER,BESUT _BUFFER: word;
8.5 scalar indexA,indexl: integer;

1* these are pointers for ADDRESSES and TRACKBUFFER respectively *
8.6 scalar satisfied, ok : logical;
8.7 scalar sum,countmaxmin: real;

8.8 gerform GETBUFFER(RESULTBUFFER); /* Get RESULTBUFFER. *
/* Initialze the partial results. *

8.9 sum:inO;
8.10 count:W0;
8.11 max:-the smallest number;
8,12 min:-the largest number;

1* Process data track by track .*

8.13 for each address ADDRESSES(indexA) in ADDRESSES 42.

1* Fetch one track into TRACKBUFFER. *
8.14 Perform FETCH_TOTRACK _BUFFER(indexA,TRACK..BWFER);

/* Select records in TRACKBUFFER one by one. *
8.15 for each record TRACKBUFkR(indexB) in TRACKBUFFER 42.
8.16 if the record is not marked a 'deletion flag'
8.17 then

1* Check whether the record satisfies the QUERY. *

8.18 Perform CHECK _QUERY(QUERY,TRACK BUFFER, indexB,satisfied);

8.19 if. satisfied-'true'-
8.20 then
8.21 if there is aggregate operation
8.22 then

1* Compute partial results and count. *
8.23 perform AGGREATEOPERATIOU(TRACK _BUFFER indezB,

sum~count ,maa,min,TARGST);
8.24 else

1* Get result by projection. *
8.25 perform PROJECT(TRACK...BUFFER, indezB *result ,TARGET);

I' Collect it into RESULT...BUFFER. *
8.26 pefr STUFFBWFEZR(RESULTBUFFER,

result,length_*fXesult);
8.27 Gadifi;
8.28 *ifL
8.29 enif
8.30 ann~ fo-1* indexl *
8.31 OW for; /* indexk"

PAGE 125

/* Stuff the partial results into RESULT_BUFFER, if any. *1
8.32 nelforg STUFF BUFFR(RESULT_BUFFER, sum, length of sum);
8.33 verform STUFF DUFFER(RESULT_BUFFER, count, length of count);
8.34 perform STUFF_BUFFER(RSULT BUFFER, max, length.of.uax);
8.35 perform STUFF_BUFFER(RESULT_BUFFER, min, length-of min);

/* Send the collected results in RESULT BUFFER to CONTROLLER. */
8.36 perform FLUSH BUFFER(RESULTBUFFER, ok);
8.37 end proc;

8.18.1 proc CHECK QUERY(input: QUERY,TRACK.BUFFER,indexB, output :satisfied);
/* This procedure is used to check whether the record in */

/* TRACKBUFFER(indexB) satisfies the QUERY or not. w/

8.18.2 list QUERY: string;
8.18.3 array TRACIJBUFFER: word;
8.18.4 scalar indexB,indexC,indexP: integer;

/* these are pointers for TRACK_BUFFER, QUERY.CONJUNCTION *1
/* and QUERY.CONJUNCTION.PREDICATE respectively. w/

8.18.5 scalar satisfied: logical;

/* Check whether the record satisfies the QUERY */
8.18.6 for each conjunction QUERY(indexC,*) in QUERY do

satisfied-'true';
/* Check whether the record satisfies the conjunction */
/* pointed by indexC. */

8.18.7 for each predicate QUERY(indexC,indexP) in QUERY(indexC,*) do
8.18.8 if The record in TRACKBUFFER(indexB) does not satisfy

the predicate in QUERY(indexC,indexP);
8.18.9 then
8.18.10 satisfied:='false';
8.18.11 s the loop;
8.18.12 end if;
8.18.13 end for; /* indexP */
8.18.14 1i satisfied:-'true' then
8.18.15 return ;
8.18.16 n _if;
8.18.17 end for; / *indexC */
8.18.18 end proc;

Is -- ----- --

PAGE 126

C.3 part Ill-The Insert Processina Subfunction

1* (1) Part III : Insert Processing Subfuaction */
/* (2) Design : RECORD PROCESSING */
/* (3) Designers : He Zingui, Masanobu Higashida */
/* (4) Date : Jan. 28, 1982 */
/* (5) Modified : Feb. 1, 1982 */
/* Feb. 18, 1982 */
/* Mar. 11, 1982 */
/* April 1, 1982 */
/* April 9, 1982 */
1* April 15,1982 */
/* April 27,1982 *1
/* May 17, 1982 */
/* May 19, 1982 */
/* (6) Purpose */
/* The procedure is designed for inserting a record into the disk*/
/* indicated by a address. */

PAGE 127

(8) Procedure Hierarchy f or Insert Processing Subfunction *

Insert processing Subfunction

FETCHTOTRACKBUFFER INSERT RECORD STORE_ TRACK.)WUFEI

PACE 128

/*(9) Jackson Chart:

Insert

Iprocessing I
--- -- -- -- -+

--------------- +4------------ ------

Shul i isetlI Insert record IStore TRACK BUFFERint a new trackl I into TRACK- back to dialF
~~+ I BUFFER I'-I------------

+---+ +-ie; -+

i o lol I Ye Io
----- - +---------

Fetch one jDo nothing
track to
TRACKBUFFER' ----

PAGE 129

/* (11) Program Specifications *

11.1 .ra INSERiT PROCESSING(input: RECORD,ADDRESS,NewTrack);
* s rocelure is used for inserting the record into 'ACKBUFFER ,*accorling to ADDRESS.

11.2 sot ADDR3SS: integer;
11 3 array TRACK BUFFR: word;
11.4 scalar RECORD: string;
11.5 scalar IevTrack: logical;

11.6 . eWrack="false"
11.8 Fetch one track indicated by ADDRESS to TRACK BUFFER. */
1 prfr FETCH_TOTRACKBWFER(ADDRESS, TRACK _BUFFfl);11:9 enif"

/* Insert the record into the TRACK BUFFER. */
11.10 Perform INSETBCORD(RECORD, TRACK_FFER);

/* Store TRACK BUFFER back to the disk accordin to ADDRESS. */
11 11 verfora STORELTRACK._BUFFER(ADDRESS,TRACK_ BUFFER);
11.12 end proc;

C.4 Pfrt IV-Ihf Undat orocessinf Subfunction

. (1) Part IV : Update proc ssing Subfunction *

2) Design : WORD PROCESINC *
II 4PatI : J ae 82 *1fi3 Designers : He Xin ui. Masanobu RigashidaS 4) Date : Jan. 2L, 1982*

* 5) Modified : Feb* 1 1982
* Fob: 18, 1982
1* Mar. 11, 1982
1' April 1, 1982
* April 9 1982
1* April 15,1982 *
1* April 27,1982 *
1* May 17, 1982

1*May 19, 1982
/* (6) Purpose : *1
1* .The pr9cedure is designed for implementing the update request *
/* with the modifier of type 0, type I or type II. the request vith *
/* modifier of type III or IV is implementea as a retrieve followed by *b
/* another type Oupdate.

___ . <

PAGS 130

1* (6) Procedure Hierarchy for Update Processing Subfunctioa '

Update Processing Stibfunctios

GTATIBUTE UPDATEDECOE CHCK CLUSIT STUFF.3U3DL

VAMM MW

PAGE 131

/* (9) Jackson Chart: *1

1 Update request Processing I
Si I

Got RESULT Update Flush RESULT_*--------------4+ 4-______- -- -4+BUFFER I-- recorusl BUFFER

I Process data t*I
track by track +-I

I I I
+---- . -- ----------

to TRACK _BUFFERI Irecords IBUFFER

--- + + back to diski

Select records 1*
in TRACK BUFFER 4-
one by oie

4-----------------------

Check if the recordI
has been marked for
deletion I
4.----------------- --I

I Deleted lot I Not deleted lot
I I

4---- ----------------
I Do nothing I I Check whether the 1*1
0---- -------.. I record satisfies

the query IS-----4.

4 ----------------- 4- ----------- ---- 4.-
Satisfied processing Jol lWhen not satisfied lol

4 ---------------- 4.----------I I I

Compute t Update the I Check if change
valuel I record in ! cluster or not

I I TRACK BUFFER I
4. 4 4.------- 4-------------4

i i4---------------... .

It neds to 1 It does not need o I

change cluster M I to change cluster +-I--- . -....... 4-.---------.......------4

I I I
-------------. .------------------. 4.---- -----
ICollect th I lte on final I .

reor to I r in h Do nothing
IRESULT_BUFFER TRAC;_UFFER II

--------.-- . -

stuff into
the bufferl

---- 4.

PAGN 132

/* (11) Progran Specifications *1

9.1 proc UPDATE PROCISSING(input; QUERY,ADDRESS38,attribute,valuel);
/* This procedure is to be used for processing of UPDATE request. */

9.2 list QUERY: string;
9.3 set ADDRESSES: integer;
9.4 array TRACK_BUFFERRESULTSUFFER: word;
9.5 scalar attributevaluel: string;
9.6 scalar indexA indexB: integer;

/* These are pointers for ADDRESSES and TRACKAUFFMt *1
/* respectively. ,/

9.7 scalar satisfied, ok: logical;

9.8 verform GET_BUFFER(RESULTBUFFER); /* Get RESULT_..UFFE. ,/

/* Process data track by track . ,/

9.9 for each address ADDRESSES(indexA) in ADDRESSES do

/* Fetch one track into TRACK_BUFFER. *1
9.10 perform FETCH_TO_TRACKBUFFER(indexA,TRMK _3UF1);

/* Select records in TRACK_BUFFIR one by one. *l
9.11 for each record TRACK. UFFR(iudexB) in TRACBUFFER d&
9.12 if the record is not marked a 'deletion flag'
9.13 then

/* Check whether the record satisfies the QUERY. *I
9.14 perform CHECKQUERY (QUERYT,TRACKJ ITIR, indaezxsatisfied);

9.15 11 satisfied-'true'
9.16 then /* Update the retrieved record in */

/* TRACk_BUFF(indedx) and collect it into e/
/* RESULTBUFFEK, or store it back to */
/* the original place. */

9.17 oerfoo UPDATE(indexB,attribute,valuel,hAcKDnFER , RESULTIUFFR) ;

9.18
end if;

9.19 end if;
9.20 and for; /* index */

/* Store TRACK BUFFER back to disk.
9.21 perfor STORETRACKBUFFUE(indexA,TRACKBUFFU);
9.22 end for; /* indexA */

/* Send the collected results in RESULT.IBUFFM to CONTROLLER. *1
9.23 p FLUSUF7U(RESULT_BWFR, ok);
9.24 end nroc;

I II I I4

PAGE 133

9.17.1 proc UPDATE(indezB,attribute,valuel ,TRACKBUFFER, RSULTABUR);

/* This procedure updates the record in TRACK._BUFFER(indezB). */

9.17.2 array TRACK.BUFFER, RESULTIBUFFER: vord;
9.17.3 scalar attribute,value,value1: string;
9.17.4 scalar indezB: integer; /* This is a pionter for TRACKBUFFER */
9.17.5 scalar checkresult: logical;

/* Get the attribute value of the record in TRACK UFFER(indexB).*/
9.17.6 perform GET.ATTRIBUTVALUE(indvxB,attribute,value);

/* Here f(...) is a function procedure. */
9.17.7 valuel-f(value);

/* Update the value of attribute in TRACK_BUFFER(indexB) */
/* into valuel. *1

9.17.8 yerfog UPDATZ)BCORD(attributevaluel ,TRACK)UFFSindexB);

/* Check if the record needs to change cluster or not. *1
9.17.9 nerforn CRECKCLUSTER(TRACIK BUFFER, indexB,cluster _changed);

9.17.10 j[clust erchanged= true'
9.17.11 the /* The updated record needs to change cluster. */

/* Collect the record into RESULTBUFFER. *1
9.17.12 jfgM STUFF_UFFER(RESULTBUFFER,TRACK_BUFE(indexB),

lengthoftherecord);

i* Delete the original record in TRACK BUFFER. */
9.17.13 perform DELETEKRICORD(TRACkBUFFER, indexl);
9.17.14 end if;
9.17.15 end nrc;

PAGE 134

C.5 Prt Y!-_rb Delete Processing hiubfrD&Lion

1* (1) Part V : Delete Processing Subfunction */
/* (2) design : RECORD PROCESSING *1
1* (3) Designers : He Xingui, Masanobu Higashida */
1* (4) Date : Jan. 28, 1982 *1
1* (5) Modified : Feb. 1, 1982
1* Feb. 18, 1982 */
/* Mar. 11, 1982
1* April 1, 1982
/* April 9, 1982 */
/* April 15,1982 */
/* April 27,1982
/* May 17, 1982 *1
1* May 19, 1982 *1
1* (6) Purpose . *1
1* The procedure is designed for deleting the records satisfying *1
/* the query in the request. */

PAGE 135

/*. (8) Procedure Hierarchy for Delete Processing Subfunction *1

Delete Procesin Subfunction
r4-

FETCH TO I D TE Ir-c oCHECK..QUERY DELIT sToRERACK.WoRnTRAcC_ oMER

/4. (9) Jackson Chart: */
4--- + .4

I Delet
I request.
I processingi

4----------

Process d ta *1
track by track

4---- ---- -T + ----- -
'IFetch one track Delete (mark)l StoretTRACK EYR

ito TRACK_.BWFFEKI I records --- -- back -o -dise +
-- -------------------

Select records j*
in TRACK BUFFER
one by one

4-- --

Check if the record I
has been marked for
deletion

4-------------------4I I
44 --------------
I Deleted lol I Not deleted lot

I I
4 . 4. 4------------ ---....

Do nothingl I Check whether the +*I
+.---------. + record satisfies

the query
4- ---- - ----- 4.I I

Satisfied lo iWhen not satisfied lo
processing +-I I

4.I I
4.------------ --------- 4.- --. 4.
Kark the I I Do nothing
record in

STRAKIUFFER

4'4------4

PAGE 136

/* (11) Program Specifications */

10.1 proc DELETEJRPROCESSING(input: QUERY,ADDRESSZS);
/* This procedure is to be used for processing of DELETE request. */

10.2 list QUERY: string;
10.3 Se ADDRESSES: integer;
10.4 array TRACKBUFFER: vord;
10.5 scalar indexAhindexB: integer;

/*These are pointers for ADDRESSES and TRACK.BUFFER respectively */
10.6 scalar satisfied: logical;

/* Process data track by track . */

10.7 for each address ADDRESSES(indezA) in ADDRESSES Al

/I Fetch one track into TRACKBUFFER. */
10.8 Perform FETCHTOTRACKBUFFER(indexh, TRACK BUFFER);

/* Select records in TRACKBUFFER one by one. */
10.9 for each record TRACKBUFFER(indexB) in TRACK.BUFFR d
10.10 jL the record is not marked a 'deletion flag'
10.11 Iha

/* Check vhether the record satisfies the QUERY. */

10.12 verfom CBCK;_QUERY(QUERY,TRACK.UFFU, indexB,satisfied);
10.13 jL satisfied-'true'
10.14 SU e * Mark the retrieved record in TRACK_BUFFER(indezB).*/
10.15 perform DELETE(TRACK)UFFER,indexB);
10.16 end if;
10.17 and if;
10.18 end foX; 1* indexz *1
10.19 perform STORE_TRACKBUFFER(indexTRACKBUFFER);

/* Store TRACK_BUFFER back to disk.
10.20 and for; /* indexA */
10.21 end poc;

_ . .

PAGE 137

APPENDIX D

THE SSL SPECIFICATION FOR TRE TEST REQUEST GENERATION AND EXECUTION PACKAGE

The program specification for the test request generation and execution

package is shown in this appendix. The specification design is composed of

two parts. Part one includes the top level design. Part two includes the

module concerned with the handling of the output from a test.

D.1 Part I - The Too Level of Test Reauest Generation and Excui

/* (1) Part I - The Top Level of Test Request Generation and
1* Execution
/* (2) Design: MDBS TEST *1
1* (3) Designer: D.S. Kerr */
1* (4) Date: July 8, 1982 *//* *1

1* (6) Purpose: */
This program can be used to test and demonstrate MDBS. The

execution of this program is called a session. Each session can be
divided into any number of subsessions. During a subsession the user
can do one of the following:

(A) Execute a list of requests that was previously
stored in a file.

(B) Prompt the user for a list of requests to be
stored in a file for later use.

(C) Retrieve a list of requests that were previously
stored in a file and then allow the user to select
requests from that list for execution. This selection can
be done in any order. The user will also be able to enter
a new request to be executed.

(D) Modify an existing list of requests that was
previously stored in a file.

In this version, requests are executed one at a time. A request
is sent to NDBS. Then the program waits for a response before sending
the next request. Transactions are not allowed.

Output may be directed to the user's terminal or to a file or to
both.

I | I

PAGE 138

(8) Procedure Hierarchy for KDBS Teat

MDB Test

SUBS1BSION

Nfzjj1 IST SUB MODIFYSUB SELE TUB OM LLST_SUB

ENTER ANDSAVE_
RZQUMS -S

DETERMINEINPUTFILE

GET_NEWURQUEST

EMTE ANDSAVEL_.
REQUEfSS

DETERMINEINPUTFILE

DISPLY

OUTM$

EXECUTE

GETNEW REQUEST

DETERMININUTFILE

EXECUT

ENTE R A DSAVE _1MC

T

R.EQU~WrS NW....?UlST...SUB

INSERTS1 UDTU DELETM REIESUB

PAGE 139

(10) Data Structures

The data structures definitions are included at the beginning of each
procedure definition in (11) below.

(11) Program Specifications

1. task NDBS Test;
2. scalar more-subsessions; /* flag: TRUE - continue, FALSE - stop */

3. Print initial message to user;
4. more-subsessions :a TRUE;
5. vhile more-subsessions do
6. Perform SUBSESSION;
7. Prompt for continue message;
8. Read continue message;
9. if user does not want to continue
10. then
11. more-subsessions :- FALSE;
12. end if
13. end vhile;
14. end task;

6. Procedure SUBSESSION;

/* During a subsession the user is able
/* to generate a group of requests. (NEW_LIST) */
/* to modify an old list of requests. (MODIFY)
/* to select requests, one at a time from a list */

of requests. (SELECT)
to run a group of requests. (OLDLIST) */

6.1 scalar current-request-file; /* The name of the file */
/* Initial value should be NULL. This name must be
/* retained from one subsession to the next. */

6.2 scalAr type-of-subsession; /* Possible values are NEWLIST,
MODIFY, SELECT and OLDLIST */

6.3 Prompt for next type-of-subsession;
6.4 Read next type-of-subsession;
6.5 cse type-of-subsession vlue
6.6 NEW_LIST: /* Enter a new request-list */

Perform NEWLISTSUE(current-request-file);
6.7 MODIFY: /* Modify an old list */

Perform MODIFSUB(current-request-file);
6.8 SELECT: /* Select requests, one at a time, from an */

/* existing request-list */
Verform SELECT"UB(current-request-file);

6.9 OLD_LIST: /* Execute an existing request-list */
2*ZLfa OLD.LISTSUB(current-request-file);

PAGE 140

6.10 otherwise: Print error message;
6.11 end case;
6.12 end Procedure;

6.6.1 Procedure NEWLIST__SUB(output: current-request-file);
6.6.2 scalar current-request-file; /* name of the file */

/* Asks user for requests - one at a time. */
/* Saves list of requests in a file with file-name given by */
/* user. */

6.6.3 scalar request-list-file-name;
/* of file to use to store the requests */

6.6.4 record request;
6.6.5 scalar next-step;

/* I(nsert), R(etrieve), U(pdate), D(elete) or F(inish) */

6.6.6 Prompt for request-list-file-name;
6.6.7 Read request-list-file-name;
6.6.8 Open file(request-list-file-name) output;
6.6.9 perform ENTERAND_SAVE)REQUESTS(request-list-file-name);
6.6.10 Close file(request-list-file-name);
6.6.11 current-request-file :- request-list-file-name;
6.6.12 end Procedure;

6.7.1 Procedure MODIFYSUB(jnputoutpul: current-request-file);
6.7.2 scalar current-request-file; /* The name of the file */

/* Retrieve an old request-list and then allow the user to */
/* modify it. Requests are examined one at a time allowing */
/* changes to be made to each request in turn. A change *1
/* can be
/* add new request before this one. */
/* modify this request. *1
/* remove this request. */
1* make no changes to this request. *1
/* Note that we must have a way to append new requests at */
/* the end of the input request list. *1I* *1
/* The input file (called input-request-file) may be *1
/* either the current-request-file or a different existing */
/* request file./* *1
/* The output file (called new-request-file) may be *1
/* either the next version of the input-request-file or a *1
/* new file.

6.7.3 scal.r input-request-file; /* The list of requests to be modified. */
6.7.4 scalar new-request-file; /* The new list of requests. */
6.7.5 scalar next-version; /* flag: TRUE - set new-request-file to next *1

/* version of input-request-file, FALSE - get new name. *1

PAGE 141

6.7.6 record request;
6.7.7 scalar more-requests-in-input-request-file; /* continuation flag */
6.7.8 scalar more-requests-to-enter; /* continuation flag */
6.7.9 scalar change-type; /* ADD, MODIFY, REMOVE, or NOCEANGE */

6.7.10 scalar next-step;
/* I(nsert), R(etrieve), U(pdate), D(elete) or F(inish) *1

/* Determine input-request-file Lo be modified. */
6.7.11 perform DETERMINEINPUTFILE(current-request-file,

input-request-file);
6.7.12 open file(input-request-file) input;

/* Determine if user wants the name of the new-request-file to */
/* be the next version of the input-request-file or a new name.*/

6.7.13 Prompt user to determine next-version;
6.7.14 Read next-version;
6.7.15 if next-version
6.7.16 then
6.7.17 Set new-request-file to next version of

input-request-file;
6.7.18 else
6.7.19 Prompt for new-request-file name;
6.7.20 Read name of new-request-file;
6.7.21 end if;
6.7.22 open file(new-request-file) output;

6.7.23 Read first request from input-request-file;
6.7.24 more-requests-in-input-request-file :- TRUE;

6.7.25 while more-requests-in-input-request-file do
6.7.26 Prompt user for change-type for this request;
6.7.27 Read change-type;
6.7.28 case change-type value
6.7.29 ADD: /* enter and save the next request */

perform GET NEW REQUEST(request);
6.7.30 Write request into new-request-file;
6.7.31 MODIFY:

Prompt and get modified request from user;
6.7.32 Write new request into new-request-file;
6.7.33 Read next request from input-request-file;
6.7.34 REMOVE:

Read next request from input-request-file;
6.7.35 NOCHANGE:

Write current request into new-request-file;
6.7.36 Read next request from input-request-file;
6.7.37 otherwise: Print system error message;
6.7.38 end case;
6.7.39 end whil;

/* Note that at this point all the old requests have been *1
/* processed. Kowever it is possible that the user wants to *1
/* append more requests. */

6.7.40 Prompt user that input file has been processed, but that more
requests may still be appended;

PAGE 142

6.7.41 perform ZNTERAND_SAVE REQUESTS(new-request-file);
6.7.42 close file(input-request-file);
6.7.43 close file(new-request-file);
6.7.44 current-request-file :- new-request-file;
6 -.45 end procedure;

6.8.1 procedure SELECTSUB(input/outyuk: current-request-file);
6.8.2 scalar current-request-file; /* The name of the file */

/* Retrieve an old list of requests. */
/* Allow user to select from this list. *1
/* Also allow user to enter new request. */

6.8.3 scalar input-request-file; /* The file containing the requests. */
6.8.4 array requests(MAXNUMBEROF_REQUESTS);

/* from input-request-file */
6.8.5 scalar number-of-requests; /* The actual number in *1

/* input-request-file must be less than */
/* MAXNUMBEROF-REQUESTS */

6.8.6 scalar request-number; /* of the request chosen */
6.8.7 record new-request; /* Provided by user. */
6.8.8 record response; /* to the request being executed. *f

6.8.9 scalar more-to-execute; 1* flag to control loop *1
6.8.10 scalar next-operation; /* Values can be REQUEST_.UMBER, DISPLAY, */

/* NEWREQUEST or STOP */

/* Determine the new input-request-file to use for *1
/* this subsession. */

6.8.11 perform DETERMINEINPUTFILE(current-request-file,
input-request-file);

6.8.12 open(input-request-file);
6.8.13 Read and store input-request-file into requests checking that

number-of-requests is less than MAXNUMBEROFREQUESTS;
6.8.14 close(input-request-file);
6.8.15 perform DISPLAY(requests);

/* Determine whether response is to go to CRT, file or both. */
6.8.16 Perform OUTM$FORMAT;
6.8.17 more-to-execute :m TRUE;

6.8.18 Ahils more-to-execute Al
6.8.19 Prompt user for next-operation /* It should be either a *1

/* request-number, a request-to-display or a
/* new-request */

6.8.20 Read next-operation;
6.8.21 case next-operation value
6.8.22 REQUESTNUMBER:

Check that request-number is less than
number-of-requests;

PAGE 143

6.8.23 performECUTI(requescs(request-br),
response);

/* Output the response to CRT, file or CRT&file,
as appropriate. */

6.8.24 perform OUTD$RESPOESE(response);

6.8.25 DISPLAY: perform DISPLAY(requests);
6.8.26 NEW REQUEST:

Perform GETNEWREQUEST(new-request);
6.8.27 yerform IECUTE(new-request, response);

/* Output the response to CRT, file or CRT&file,
as appropriate. */

6.8.28 Perform OUTM$RESPONSE(response);

6.8.29 STOP: more-to-execute :- FALSE;
6.8.30 othervise: print error message;
6.8.31 end case;
6.8.32 end]hile;

6.8.33 perform OUTM$FINISH;
6.8.34 current-request-file :- input-request-file;

6.8.35 end procedure;

6.9.1 vrocedure OLD LISTSUB(current-request-file);

6.9.2 scalar current-request-file; /* The name of the file */

I* Retrieve and execute an old list of requests. *1

6.9.3 scalar input-request-file /* The file containing the requests. */
6.9.4 record request;
6.9.5 record response; /* to a request that has been executed. */

/I Determine the new current-request-fxle to use for this */
/* subsession. *1

6.9.6 perform DETERMINEINPUT_FIL(current-request-file,
input-request-file);

6.9.7 Open(input-request-file) input;
6.9.8 Read first request from input-request-file;

/* Determine whether response is to go to CRT, file or both. */
6.9.9 uerforn OUThK$ORMAT;
6.9.10 while nore-requests Al
6.9.11 nerform EZCUTE(request, response);

/* Output the response to CRT, file or CRT&file, as */
/* appropriate. */

6.9.12 perform OUTM$RESPONSE(response);
6.9.13 Read next request from input-request-file;
6.9.14 And zhila;

6.9.15 pefom OUT$1IIISR;

PAGE 144

6.9.16 close(input-request-file);
6.9.17 current-request-file :- input-request-file;

6.9.18 end procedure;

6.6.9.1 procedure ENTER_AND_SAVEREQUESTS
(input: request-list-file-name);

6.6.9.2 scalar request-list-file-name;
/* of file to use to store the requests */

6.6.9.3 record request;
6.6.9.4 scalar next-step;

/* I(nsert), R(etrieve), U(pdate), D(elete) or F(inish) *1

6.6.9.5 next-step :- I;
6.6.9.6 while next-step - F do
6.6.9.7 Prompt for next-step;
6.6.9.8 case next-step value
6.6.9.9 I: /* enter and save the next insert request */

perform INSERTSUB(request);
6.6.9.10 Write request into request-list-file-name ;
6.6.9.11 R: /* enter and save the next retrieve request */
6.6.9.12 perform RETRIEVESUB(request);
6.6.9.13 Write request into request-list-file-nae ;
6.6.9.14 U: /* enter and save the next update request */
6.6.9.15 perform DELETkSUB(request);
6.6.9.16 Write request into request-list-file-name
6.6.9.17 D: /* enter and save the next delete request */
6.6.9.18 Perform DELETESUB(request);
6.6.9.19 Write request into request-list-file-name ;
6.6.9.20 F: /* Finish entering requests */
6.6.9.21 otherwise: Print error message;
6.6.9.22 end case;
6.6.9.23 end vhile;
6.6.9.24 end Procedure;

6.7.11.1 procedure DETERMINEINPUTFILE(input: current-request-file,
6.7.11.2 output: input-request-file);
6.7.11.3 scalar current-request-file;
6.7.11.4 scalar input-request-file;

/* Determine the input file to be used. It may be either */
/* the current-request-file or a different existing *1
/* request file. */

6.7.11.5 scalar modify-current-file-flag;
/* TRUE - select new input file */

6.7.11.6 i current-request-file is U=
6.7.11.7 limn
6.7.11.8 Prompt for name of input-request-file;
6.7.11 9 Read name of input-request-file;

III I

PAGE 145

6.7.11.10 /~g * Determine if user wants to use the *
/* current-request-file or a different old file. *

6.7 .11 .11 Prompt user to determine moify-current-file-flag;
6.7.11.12 Read moify-current-file-flag;
.6.7.11.13 if modify-current-file-flag
6.7.11.14 te
6.7.11.15 Prompt, f or name of input-request-file;
6.7 .11 .16 Read name of input-request-file;
6.7.11.17 else
6.7.11.18 input-request-file :- current-request-file;
6.7 .11 .19 end jj;
6.7.11.20 Ald jL;
6.7.11.21 end iprocedure;

6.7.29.1 vrocedure GET _NEW..REQUEST(output: request)
6.7.29.2 record request; 1* to be obtained from user *

1* Prompts user for information necessary to enter a *
1* new request. Returns the request. *

6.7 .29.3 scalar request-type;
1* I(nsert), R(etrieve), U(pdate) or D(elete) *

6.7.29.4 Prompt for next request-type;
6.7.29.5 Read request-type;
6.7.29.6 case request-type valuea
6.7.29.7 1: perfor INSERT-SUB(request)
6.7 .29.8 U: perform UPDATESUB(request)
6.7.29.9 D: pefr DELETESUB(request)
6.7 .29.10 R: pefr RETRIEVEUB(request)
6.7.29.11 otherwise: Print error message;
6.7.29.12 end case;

F6.7.29.13 end procedure;

6.8.15.1 Procdur DISPLAY(jp&2AL: requests)
/* Display the requests and their numbers at the *
/* terminal. *

6.8.15.2 ara requests(K&NAJUMBERO.REQURSTS)
1* to be displayed. *

6.8.15.3 .proced.ure;

PAGE 146

6.8.23.1 orocedure KXECUTE(iout: request, S : response);
/* Ask MDBS to execute this request. Return the response. */

6.8.23.2 record request; /, to be executed */
6.8.23.3 record response; /* to the execution of the request */

6.8.23.4 end nrocedure;

D.2 Prt I - The Out u Module fi Test Execution

/* (1) Part II - The Output Module for Test Execution *1
1" (2) Design: OUTM */
/* (3) Designer: D.S. Kerr *1
/* (4) Date: July 8, 1982/* */

/* (6) Purpose: */
/* The following three procedures are used to handle the displaying */
/* and/or saving of the responses to the execution of the requests. */
/* The default is to display the responses on the CRT. */

(8) Procedure Hierarchy for the Nodule OUTH

OUTK$

FORVAT

RESPONSE
FINISH

(10) Data Structures

The data structures definitions are included as part of the module and at
the beginning of each procedure definition in (11) below.

PAGE 147

(11) Program Specifications

modulI OUDI

programs FORMAT, RESPONSE, FINISH;
data sets

/* Variables controlling the output of responses */
scalar CRT-output-flag;

/* TRUE if output is to be displayed on CRT. /
/* Initial value is TRUE. */

scalar file-output-flag;
/* TRUE if output is to be put into a file. */
/* Initial value is FALSE. */

/* CIT-output-flag and/or file-output-flag must be TRUE */
scalar response-file-name;

/* the name of the file if output is to be made *1
/* to a file. *1

9n module;

1. procedure FORMAT;
/* Determines what form of output is to be used. Opens */
/* response file, if appropriate. */

2. scalar change-in-output; /* flag: TRUE - prompt user for */
/* how to change output. */

3. Prompt for change-in-output;
4. Read change-in-output;
5. JU change-in-output
6. tha k2"
7. Prompt for output form: CRT, file, both CRT&file;
8. Read output form;
9. Set CIT-output-flag;
10. Set file-output-flag;
11. j[file-output-flag
12. lima
13. Prompt for response-file name;
14. Read response-file-name;
15. Open response-file-name;
16. d ;
17. AAiL.;
Is. Ad procedure;

PAGE 148

1. procedure RESPONSE(jj"M: response);

/* Outputs the response. */

2. record response; 1* to be output *1

3. jL CRT-output-flag
4. then
5. Print response on CRT;
6. end if;
7. if file-output-flag
8. then
9. Write response in file(response-file-name);
10. Ind it;
11. end Procedure;

1. Procedure FINISH;
1* Carries out whatever processing is needed when a subsession e/
/* is completed, closes response-file-name if appropriate. */

2. if file-output-flag
3. Ua
4. close(response-file-name);
5. end if;
6. end Procedure;

PAGE 149

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93940

Office of Research Administratiou
Code 012A
Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 52Hq 100
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

